Effect of Regional Differences on Fatty Acid Profiles of Ulva linza (Linnaeus 1753), Enteromorpha flexuosa (Agardh, 1883) and Taonia atomaria (Agardh, 1848)
DOI:
https://doi.org/10.29329/actanatsci.2021.314.12Keywords:
U. linza, E. flexuosa, T. atomaria, Lipids, Fatty acidsAbstract
Total fat and fatty acid levels of Ulva linza (Linnaeus 1753), Enteromorpha flexuosa (Agardh, 1883), and Taonia atomaria (Agardh, 1848) collected from Viranşehir, Taşkıran, and Karaduvar coasts were determined. The total oil level of the samples was found to be 1.31-1.91%, 1.23%, 7.78% for U. linza, E. flexuosa and T. atomaria, respectively. The dominant saturated fatty acids are palmitic acid and stearic acid. The highest level of palmitic acid (32.27%) was found in E. flexuosa in Viranşehir beach. The highest level of stearic acid was found on the coast of Viranşehir (7.20%), U. linza. The highest level of ΣSFA was found in the U. linza species on Taşkıran coast (37.89%), and the lowest level was determined in the T. atomaria species on the Taşkıran coast (18.13%). It is oleic acid that has a high level of monounsaturated fatty acids. The highest level of this fatty acid (10.35%) was found in E. flexuosa species in Viranşehir beach. The highest level of ΣMUFA was found in the Viranşehir coast (16.67%) and the lowest level (11.39%) in the U. linza on the Viranşehir beach. The highest level of linolelaidic acid in polyunsaturated fatty acids was found in E. flexuosa in Viranşehir beach (3.34%). The highest level of linoleic acid (4.85%) was found in U. linza on the coast of Viranşehir. The highest level of ΣPUFA was found in T. atomaria on the Taşkıran coast (16.56%), and the lowest level (7.03%) was found in U. linza.
References
Aguilera-Morales, M., Casas-Valdez, M., Carrillo-Domínguez, S., & González-Acosta, B., & Pérez-Gil, F. (2005). Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. Journal of Food Composition and Analysis, 18(1), 79-88. https://doi.org/10.1016/j.jfca.2003.12.012
Aktar, S., & Cebe G. E. (2010). General spesifications, using areas of algae and their importance on pharmacy. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 39(3), 237-264. https://doi.org/10.1501/Eczfak_0000000568
Alçay, A. Ü., Bostan, K., Dinçel, E., & Varlık, C. (2017). Alglerin insan gıdası olarak kullanımı [Algae as a food source for humans]. Aydın Gastronomy, 1(1), 47-59.
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
Caf, F., Yılmaz, Ö., Durucan F., & Özdemir, N. Ş. (2015). Biochemical components of three marine macroalgae (Padina pavonica, Ulva lactuca and Taonia atomaria) from the Levantine Sea coast of Antalya, Turkey. Journal of Biodiversity and Environmental Sciences, 6(4), 401-411.
Carvalho, J., Ribeiro, A., Castro, J. D. F. de, Vilarinho, C., & Castro, F. (2011). Biodiesel production by microalgae and macroalgae from north littoral Portuguese coast. Proceedings of the 1st International Conference on Wastes: Solutions, Treatments and Opportunities, Portugal. https://core.ac.uk/download/pdf/55615137.pdf
Colombo, M. L., Rise, P., & Giavarini, F. (2006). Marine microalgae as sources of polyunsaturated fatty acids. Plant Foods for Human Nutrition, 61, 64-69. https://doi.org/10.1007/s11130-006-0015-7
Cowing, B. E., & Saker, K. E. (2001). Polyunsaturated fatty acids and epidermal growth factor receptor/mitogen-activated protein kinase signaling in mammary cancer. The Journal of Nutrition, 131(4), 1125–1128. https://doi.org/10.1093/jn/131.4.1125
El-Sheekh, M. M., Osman, M. E. H., Dyab, M. A., Amer, M. S. (2006). Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environmental Toxicology and Pharmacology, 21(1), 42-50. https://doi.org/10.1016/j.etap.2005.06.006
EL-Wakf, A. M., Ebraheem, H. A., Serag, H. A., Hassan, H. A., & Gumaih, H. S. (2010). Association between inflammation and the risk of cardiovascular disorders in atherogenic male rats: Role of virgin and refined olive oil. Journal of American Science, 6(12), 807-817.
Ganesan, K., Suresh Kumar, K., & Subba Rao, P. V. (2011). Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innovative Food Science & Emerging Technologies, 12(1), 73-78. https://doi.org/10.1016/j.ifset.2010.11.005
Ganesan, K., Suresh Kumar, K., Subba Rao, P. V., Tsukui, Y., Bhaskar, N., Hosokawa, M., & Miyashita, K. (2014). Studies on chemical composition of three species of Enteromorpha. Biomedicine & Preventive Nutrition, 4(3), 365–369. https://doi.org/10.1016/j.bionut.2014.04.001
Gümüş, G. (2006). Deniz marulunun kimyasal kompozisyonunun araştırılması. [Yüksek Lisans Tezi. Ege Üniversitesi].
Guner, H., & Aysel, V. (1989). Tohumsuz bitkiler I. cilt: Algler. Ege Üniversitesi Basımevi.
Guschina, I. A., & Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160-186. https://doi.org/10.1016/j.plipres.2006.01.001
Harwood, J. L., & Guschina, I. A. (2009). The versatility of algae and their lipid metabolism. Biochimie, 91(6), 679-684. https://doi.org/10.1016/j.biochi.2008.11.004
HMSO. (1994). Nutritional aspects of cardiovascular disease. Report on health and social subjects no. 46. London, UK.
Holdt, S. L., & Kraan S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23, 543-597. https://doi.org/10.1007/s10811-010-9632-5
Ichibara, K., Shibahara, A., Yamamoto, K., & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31(5), 535-539. https://doi.org/10.1007/bf02522648
Kandasamy, G., Karuppiah, S. K., & Subba Rao, P. V. (2012). Salt- and pH-induced functional changes in protein concentrate of edible green seaweed Enteromorpha species. Fisheries Science, 78, 169-176. https://doi.org/10.1007/s12562-011-0423-y
Lewis, M. A., & Wang, W. (1997). Water quality and aquatic plants. In W. Wang, W. R. Lower, J. W. Gorsuch, & J. S. Hughes (Eds.), Plants for environmental studies (pp. 141-175). CRC Lewis Publishers.
Mchugh, D. J. (2003). A guide to the seaweed industry. FAO Fisheries Technical Paper, No. 441. Rome. 105p.
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96. https://doi.org/10.1263/jbb.101.87
Tabudravu, J. N., Gangaiya, P., Sotheeswaran, S., & South, G. R. (2002). Enteromorpha flexuosa (Wulfen) J. Agardh (Chlorophyta: Ulvales)--evaluation as an indicator of heavy metal contamination in a tropical estuary. Environmental Monitoring and Assessment, 75(2),201-213. https://doi.org/10.1023/A:1014439931466
Ulbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338, 985-992. https://doi.org/10.1016/0140-6736(91)91846-m
Wahbeh, M. I. (1997). Amino acid and fatty acid profiles of four species of macroalgae from Aqaba and their suitability for use in fish diets. Aquaculture, 159(1–2), 101-109. https://doi.org/10.1016/S0044-8486(97)00183-X
Weihrauch, J. L., Posati, L. P., Anderson, B. A., & Exler, J. (1975). Lipid conversion factors for calculating fatty acid contents of foods. Journal of the American Oil Chemists’ Society, 54(1), 36-40. https://doi.org/10.1007/BF02671370
Zeybek, N., Zeybek, U., & Saygıner, B. (2003). Farmasötik botanik. Meta Basımevi.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Mısra Bakan, Büşra Peksezer, Nahit Soner Börekçi, Mehmet Tahir Alp, Deniz Ayas

This work is licensed under a Creative Commons Attribution 4.0 International License.
