Calculation of Residual Stress in Ships by the Method of the Fresnel Approximation
DOI:
https://doi.org/10.29329/actanatsci.2022.351.07Keywords:
AISI4140, DUPLEX, Residual stress, Fresnel approach, Brewster angleAbstract
Predictive maintenance techniques are developed to help determine the condition of in-service equipment in order to predict when maintenance should be performed. There is a need for cost-performance effective approaches and methods for predictive maintenance that can make non-destructive on-site measurements to predict residual stress-induced critical faults in large metal structures, such as ships. In this study, an optical method based on the calculation of the non-destructive surface magnetic permeability coefficient is proposed for monitoring the residual stress distribution in AISI4040 and DUPLEX materials. In our proposed new method for determining theoretically the residual stress at the joint site of large plates in ships, the Lorentz-Drude model and the Fresnel approximation were used. Our results show that the new optical technique proposed in this study is sufficient and thriving for the determination of residual stresses in large metal structures.
References
Abdulkhadar, U. M., ShivakumarGouda, P. S., Veeresh Kumar, G. B., & Kodancha, K. G. (2021). An assessment on residual stress measurement in FRP composites using relaxation techniques. Iranian Journal of Materials Science and Engineering, 18(3), 1-15. https://doi.org/10.22068/ijmse.2075
Asmael, M., Zeeshan, Q., & Glaissa, M. (2020). Recent applications of residual stress measurement techniques for FSW joints: A review. Jurnal Kejuruteraan, 32(3), 1-15. https://doi.org/10.17576/jkukm-2020-32(3)-01
Cui, W. (2002). A state-of-the-art review on fatigue life prediction methods for metal structures. Journal of Marine Science and Technology, 7, 43-56. https://doi.org/10.1007/s007730200012
Dive, V., & Lakade, S. (2021). Recent research progress on residual stress measurement using non-destructive testing. Materials Today: Proceedings, 47, 3282-3287. https://doi.org/10.1016/j.matpr.2021.07.094
Drude, P. (1900). Zur elektronentheorie der metalle. Annalen der Physik, 306(3), 566-613. https://doi.org/10.1002/andp.19003060312
Ehrenreich, H., & Philipp, H. R. (1962). Optical properties of Ag and Cu. physical review, 128(4), 1622-1629. https://doi.org/10.1103/PhysRev.128.1622
Fricke, W. (2017). Fatigue and fracture of ship structures. In J. Carlton, P. Jukes, & Y. S. Choo (Eds.), Encyclopedia of Maritime and Offshore Engineering. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118476406.emoe007
Gan, S., Han, Y., & Chen, F. (2018). Analysis on error factors of welding residual stress measured by hole drilling method. Transactions of the China Welding Institution, 39(10), 48-53. https://doi.org/10.12073/j.hjxb.2018390247
Ghaedamini, R., Ghassemi, A., & Atrian, A. (2018). A comparative experimental study for determination of residual stress in laminated composites using ring core, incremental hole drilling, and slitting methods. Materials Research Express, 6(2), 025205. https://doi.org/10.1088/2053-1591/aaee46
Grigorev, E., & Nosov, V. (2022). Improving quality control methods to test strengthening technologies: A multilevel model of acoustic pulse flow. Applied Sciences, 12(9), 4549. https://doi.org/10.3390/app12094549
Guo, J., Fu, H., Pan, B., & Kang, R. (2021). Recent progress of residual stress measurement methods: A review. Chinese Journal of Aeronautics, 34(2), 54-78. https://doi.org/10.1016/j.cja.2019.10.010
Hecht, E. (2002). Optics (4th Ed.). Addison-Wesley.
Hristoforou, E., Ktena, A., Vourna, P., & Argiris, K. (2018). Dependence of magnetic permeability on residual stresses in alloyed steels. American Institute of Physics (AIP) Advances, 8(4), 047201. https://doi.org/10.1063/1.4994202
Huang, X., Liu, Z., & Xie, H. (2013). Recent progress in residual stress measurement techniques. Acta Mechanica Solida Sinica, 26(6), 570-583. https://doi.org/10.1016/S0894-9166(14)60002-1
Hüttner, B. (1995). On Brewster’s angle of metals. Journal of Applied Physics, 78(7), 4799-4801. https://doi.org/10.1063/1.359763
Iordache, V. E., Hug, E., & Buiron, N. (2003). Magnetic behaviour versus tensile deformation mechanisms in a non-oriented Fe-(3 wt.%)Si steel. Materials Science and Engineering: A, 359(1-2), 62-74. https://doi.org/10.1016/S0921-5093(03)00358-7
Jiles, D. C. (1988). Variation of the magnetic properties of AISI 4140 steels with plastic strain. Physica Status Solidi (a), 108, 417-429.
Jiménez, L. M., García, J. J. R., Contreras, A. O., & Baleanu, D. (2017). Analysis of Drude model using fractional derivatives without singular kernels. Open Physics, 15(1), 627-636.
Johnson, P. B., & Christy, R. W. (1972). Optical constants of the noble metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/PhysRevB.6.4370
Kozak, J., & Gorski, Z. (2011). Fatigue strength determination of ship structural joints. Polish Maritime Research, 18. https://doi.org/10.2478/v10012-011-0009-8
Kurashkin, K., Mishakin, V., & Rudenko, A. (2019). Ultrasonic evaluation of residual stresses in welded joints of hydroelectric unit rotor frame. Materials Today: Proceedings, 11(1), 163-168. https://doi.org/10.1016/j.matpr.2018.12.125
Leggatt, R. H., Smith, D. J., Smith, S. D., & Faure, F. (1996). Development and experimental validation of the deep hole method for residual stress measurement. The Journal of Strain Analysis for Engineering Design, 31(3), 177-186. https://doi.org/10.1243/03093247v313177
Magnier, A., Scholtes, B., & Niendorf, T. (2018). On the reliability of residual stress measurements in polycarbonate samples by the hole drilling method. Polymer Testing, 71, 329-334. https://doi.org/10.1016/j.polymertesting.2018.09.024
Malitson, I. H. (1965). Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America, 55(10), 1205-1209. https://doi.org/10.1364/JOSA.55.001205
Markovic, M. I., & Rakic, A. D. (1990). Determination of the reflection coefficients of laser light of wavelengths λ∊(0.22 μm,200 μm) from the surface of aluminum using the Lorentz-Drude model. Applied Optics, 29(24), 3479-3483. https://doi.org/10.1364/AO.29.003479
Moharrami, R., & Sadri, M. (2018). A procedure for high residual stresses measurement using the ring‐core method. Strain, 54(4), e12270. https://doi.org/10.1111/str.12270
Nelson, D. V. (2010). Residual stress determination by hole drilling combined with optical methods. Experimental Mechanics, 50(2), 145-158. https://doi.org/10.1007/s11340-009-9329-3
Pedrotti, F. L., Pedrotti, L. M., & Pedrotti, L. S. (2017). Introduction to optics (3 ed.). Cambridge University Press.
Perevertov, O. (2007). Influence of the residual stress on the magnetization process in mild steel. Journal of Physics D: Applied Physics, 40(4), 949. https://doi.org/10.1088/0022-3727/40/4/004
Qiu, W., Ma, L., Li, Q., Xing, H., Cheng, C., & Huang, G. (2018). A general metrology of stress on crystalline silicon with random crystal plane by using micro-Raman spectroscopy. Acta Mechanica Sinica, 34(6), 1095-1107. https://doi.org/10.1007/s10409-018-0797-5
Rakić, A. D. (1995). Algorithm for the determination of intrinsic optical constants of metal films: Application to aluminum. Applied Optics, 34(22), 4755-4767. https://doi.org/10.1364/AO.34.004755
Sepsi, M., Szobota, P., & Mertinger, V. (2022). Quasi-Non-destructive characterization of carburized case depth by an application of centerless X-ray diffractometers. Journal of Materials Engineering and Performance, 31(6), 4668-4678. https://doi.org/10.1007/s11665-022-06591-0
Shea, J. J. (2005). Modern magnetic materials - principles and applications [Book Review]. IEEE Electrical Insulation Magazine, 21(4), 57-58. https://doi/10.1109/MEI.2005.1490004
Song, C., Du, L., Qi, L., Li, Y., Li, X., & Li, Y. (2017). Residual stress measurement in a metal microdevice by micro Raman spectroscopy. Journal of Micromechanics and Microengineering, 27(10), 105014. https://doi.org/10.1088/1361-6439/aa8912
Tan, C. Z. (1999). Electric potential energy of the incident light and the Hamiltonian of the induced oscillators in non-absorbing isotropic dielectrics. Physica B: Condensed Matter, 269(3-4), 373-378. https://doi.org/10.1016/S0921-4526(99)00115-5
Tan, C. Z., & Arndt, J. (2001). Refractive index, optical dispersion, and group velocity of infrared waves in silica glass. Journal of Physics and Chemistry of Solids, 62(6), 1087-1092. https://doi.org/10.1016/S0022-3697(00)00285-7
Totten, G., Howes, M., & Inoue, T. (Eds.). (2002). Handbook of residual stress and deformation of steel. ASM International.
Umeda, R., Totsuji, C., Tsuruta, K., & Totsuji, H. (2009). An FDTD analysis of nanostructured electromagnetic metamaterials using parallel computer. Materials Transactions, 50, 994-998. https://doi.org/10.2320/matertrans.MC200822
Vial, A., Grimault, A.-S., Macías, D., Barchiesi, D., & de la Chapelle, M. L. (2005). Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Physical Review B, 71(8), 085416. https://doi.org/10.1103/PhysRevB.71.085416
Vourna, P., Ktena, A., Tsarabaris, P., & Hristoforou, E. (2018). Magnetic Residual Stress Monitoring Technique for Ferromagnetic Steels. Metals, 8(8), 592. https://doi.org/10.3390/met8080592
Yoshida, S., Sasaki, T., Usui, M., Sakamoto, S., Gurney, D., & Park, I.-K. (2016). Residual stress analysis based on acoustic and optical methods. Materials, 9(2), 112. https://doi.org/10.3390/ma9020112
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Semih Öztürk, Mustafa Kurt

This work is licensed under a Creative Commons Attribution 4.0 International License.