Escherichia coli: Germ Theory, A Bacterial Killer Mechanism, Virulence, Pathogenicity Islands (PAIs), Pathogenesis, Secretion Systems
DOI:
https://doi.org/10.29329/actanatsci.2023.353.08Keywords:
Escherichia coli, A bacterial killer mechanism, Virulence, Pathogenicity islands, Pathogenesis, Secretion systems, Germ theoryAbstract
Why do bacteria damage their hosts? After bacteria bypass the immune system, bacterial virulence enables a host to replicate and propagate within a host in part by demolishing or escaping host defenses. Bacterial pathogens possess an array of specific killer mechanisms that submit virulence and the capacity to intercept host defence mechanisms. Mechanisms of virulence are often mediated by the subversion of normal aspects of host biology. Also, recently, three novels but wide themes have emerged in the field of bacterial virulence: a bacterial killing mechanism, secretion systems and pathogenicity islands. So, pathogen changes the host function so as to support the pathogen’s survival or multiplication. Such subversion is often mediated by the specific interaction of bacterial effector molecules with host-encoded proteins and other molecules. Escherichia coli is a considerable and diverse micro alive. E. coli needs only to acquire a mix of mobile genetic elements to become a pathogen capable of causing diseases. The worldwide burden of these diseases is staggering, with hundreds of millions alive affected annually. E. coli strains have been well a bacteria model, and each uses an arsenal of virulence and toxin to subvert host cellular functions to reenforce its virulence. This review focuses on the drastic and different pathogenic mechanisms that are used by various E. coli strains.
References
A Latin Dictionary. (2009). Founded on Andrews’ edition of Freund’s Latin dictionary. revised, enlarged, and in great part rewritten by. Charlton T. Lewis, Ph.D. and. Charles Short, L.L.D. Oxford. Clarendon Press. 1879. The National Endowment for the Humanities provided support for entering this text.
Amanze, E. K., Ochomma, O. B., Udensi, C. G., Christian, C. P., Dike, C. S., Okakpu, J. C., & Nwokafor, C. V. (2022). The prevalence of extended spectrum beta-lactamase producing uropathogenic Escherichia coli from Mouau female hostel students. South Asian Journal of Research in Microbiology, 13(4), 24–34. https://doi.org/10.9734/sajrm/2022/v13i4255
Basavaraju, M., & Gunashree, B. S. (2022). Escherichia coli: An overview of main characteristics. In Starčič Erjavec, M. (Ed.), Escherichia coli - Old and new insights. IntechOpen. https://doi.org/10.5772/intechopen.105508
Berne, C., Ducret, A., Hardy, G. G., & Brun, Y. V. (2015). Adhesins involved in attachment to abiotic surfaces by Gram‐negative bacteria. Microbiology Spectrum, 3(4), 10.1128/microbiolspec.MB-0018-2015. https://doi.org/10.1128/microbiolspec.mb-0018-2015
Blount, Z. D. (2015). The natural history of model organisms: The unexhausted potential of E. coli. eLife, 4, e05826. https://doi.org/10.7554/eLife.05826
Blum, G., Ott, M., Lischewski, A., Ritter, A., Imrich, H., Tschäpe, H., & Hacker, J. (1994). Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infection and Immunity, 62(2), 606-614. https://doi.org/10.1128/iai.62.2.606-614.1994
Bocian-Ostrzycka, K. M., Grzeszczuk, M. J., Banaś, A. M., & Jagusztyn-Krynicka, E. K. (2017). Bacterial thiol oxidoreductases—from basic research to new antibacterial strategies. Applied Microbiology and Biotechnology, 101(10), 3977-3989. https://doi.org/10.1007/s00253-017-8291-8
Clark, D. J., & Maaløe, O. D. N. A. (1967). DNA replication and the division cycle in Escherichia coli. Journal of Molecular Biology, 23(1), 99-112. https://doi.org/10.1016/S0022-2836(67)80070-6
Cugmas, B., Avberšek, M., Rosa, T., Godec, L., Štruc, E., Golob, M., & Zdovc, I. (2021). How accurate are veterinary clinicians employing flexicult vet for identification and antimicrobial susceptibility testing of urinary bacteria?. Antibiotics, 10(10), 1160. https://doi.org/10.3390/antibiotics10101160
Dobrindt, U., Blum-Oehler, G., Nagy, G., Schneider, G., Johann, A., Gottschalk, G., & Hacker, J. (2002). Genetic structure and distribution of four pathogenicity islands (PAI I536 to PAI IV536) of uropathogenic Escherichia coli strain 536. Infection and Immunity, 70(11), 6365-6372. https://doi.org/10.1128/iai.70.11.6365-6372.2002
Fındık, A. (2023). Escherichia coli Enfeksiyonları. Retrieved on January 3, 2023, from https://avys.omu.edu.tr/storage/app/public/afindik/72784/E.%20coli%20Enfeksiyonlar%C4%B1.pdf
Freeman, S., & Herron, J. C. (2007). Evolutionary analysis (4th ed.). Benjamin Cummings.
Gambushe, S. M., Zishiri, O. T., & El Zowalaty, M. E. (2022). Review of Escherichia coli O157: H7 prevalence, pathogenicity, heavy metal and antimicrobial resistance, African perspective. Infection and Drug Resistance, 15, 4645-4673. https://doi.org/10.2147/idr.s365269
Hacker, J., & Kaper, J. B. (1999). The concept of pathogenicity islands (p. 1-11). In Kaper, J. B. & Hacker, J. (Eds.), Pathogenicity islands and other mobile virulence elements. ASM Press.
Hacker, J., Blum-Oehler, G., Hochhut, B., & Dobrindt, U. (2003). The molecular basis of infectious diseases: pathogenicity islands and other mobile genetic elements. Acta Microbiologica et Immunologica Hungarica, 50(4), 321-330. https://doi.org/10.1556/amicr.50.2003.4.1
Hacker, J., Blum-Oehler, G., Janke, B., Nagy, G., & Goebel, W. (1999). Pathogenicity islands of extraintestinal Escherichia coli (p. 59-76). In Kaper, J. B. & Hacker, J. (Eds.), Pathogenicity islands and other mobile virulence elements. ASM Press.
Hacker, J., Knapp, S., & Goebel, W. (1983). Spontaneous deletions and flanking regions of the chromosomally inherited hemolysin determinant of an Escherichia coli O6 strain. Journal of Bacteriology, 154(3), 1145-1152. https://doi.org/10.1128/jb.154.3.1145-1152.1983
Hampton, H. G., Watson, B. N., & Fineran, P. C. (2020). The arms race between bacteria and their phage foes. Nature, 577(7790), 327-336. https://doi.org/10.1038/s41586-019-1894-8
Koch, R. (1893). Ueber den augenblicklichen Stand der bakteriologischen Cholera diagnose. Zeitschrift für Hygiene und Infektionskrankheiten, 14, 319-338.
Kotzekidou, P. (Ed.). (2016). Food hygiene and toxicology in ready-to-eat foods. Academic Press.
Levin, B. R., & Bergstrom, C. T. (2000). Bacteria are different: Observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 6981-6985. https://doi.org/10.1073/pnas.97.13.6981
LibreTexts. (2023). 15.2: How Pathogens Cause Disease, Last updated Jan 1, 2023. OpenStax CNX Microbiology, https://bio.libretexts.org/Bookshelves/Microbiology/Microbiology_(OpenStax)/15%3A_Microbial_Mechanisms_of_Pathogenicity/15.02%3A_How_Pathogens_Cause_Disease
Manatsathit, S., Dupont, H. L., Farthing, M., Kositchaiwat, C., Leelakusolvong, S., Ramakrishna, B. S., Sabra, A., Speelman, P., Surangsrirat, S., & Working Party of the Program Committ of the Bangkok World Congress of Gastroenterology 2002 (2002). Guideline for the management of acute diarrhea in adults. Journal of Gastroenterology and Hepatology, 17 Suppl, S54-S71. https://doi.org/10.1046/j.1440-1746.17.s1.11.x
Moulin-Schouleur M., Répérant M., Laurent S., Brée A., Mignon-Grasteau S., Germon P., Rasschaert D., & Schouler C. (2007). Extraintestinal pathogenic Escherichia coli strains of avian and human origin: Link between phylogenetic relationships and common virulence patterns. Journal of Clinical Microbiology, 45(10), 3366-3376 https://doi.org/10.1128/jcm.00037-07
Oh, Y. R., & Eom, G. T. (2021). Identification of a lactose-oxidizing enzyme in Escherichia coli and improvement of lactobionic acid production by recombinant expression of a quinoprotein glucose dehydrogenase from Pseudomonas taetrolens. Enzyme and Microbial Technology, 148, 109828. https://doi.org/10.1016/j.enzmictec.2021.109828
Onyeberechiya, S. O., Ola, P. I., & Odeni, T. O. (2021). Bacteriological Load Analysis of Moringa oleifera Lam. Leaves Consumed in Guinea Savannah Vegetation Zones of Nigeria. American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 75(1), 86-105.
Oumnh.ox.ac.uk (2023). Oxford University Museum of Natural History Home to Earth, science, and nature. Retrieved on January 19, 2023, from https://oumnh.ox.ac.uk/bacterial-world
Oxford Dictionaries. (2016). Definition of Germ in English from the Oxford dictionary. Oxford Dictionaries. Archived from the original on 6 April 2016. Retrieved on April 5, 2016.
Peng, J., Zhang, X., Yang, J., Wang, J., Yang, E., Bin, W., Wei, C., Sun, M., & Jin, Q. (2006). The use of comparative genomic hybridization to characterize genome dynamics and diversity among the serotypes of Shigella. BMC Genomics, 7(1), 218. https://doi.org/10.1186/1471-2164-7-218
Pokharel, P., Dhakal, S., & Dozois, C. M. (2023). The diversity of Escherichia coli pathotypes and vaccination strategies against this versatile bacterial pathogen. Microorganisms, 11(2), 344. https://doi.org/10.3390/microorganisms11020344
Ramesh, A. K., Parreño, V., Schmidt, P. J., Lei, S., Zhong, W., Jiang, X., Emelko, M. B., & Yuan, L. (2020). Evaluation of the 50% infectious dose of human norovirus Cin-2 in gnotobiotic pigs: A comparison of classical and contemporary methods for endpoint estimation. Viruses, 12(9), 955. https://doi.org/10.3390/v12090955
Rathore, S. S., Sathiyamoorthy, J., Lalitha, C., & Ramakrishnan, J. (2022). A holistic review on Cryptococcus neoformans. Microbial Pathogenesis, 166, 105521. https://doi.org/10.1016/j.micpath.2022.105521
Saldaña, Z., Sánchez, E., Xicohtencatl-Cortes, J., Puente, J. L., & Girón, J. A. (2011). Surface structures involved in plant stomata and leaf colonization by Shiga-toxigenic Escherichia coli O157: H7. Frontiers in Microbiology, 2, 119. https://doi.org/10.3389/fmicb.2011.00119
Samiei, H., Nazarian, S., Hajizade, A., & Kordbacheh, E. (2023). In silico design, production and immunization evaluation of a recombinant bivalent fusion protein candidate vaccine against E. coli O157: H7. International Immunopharmacology, 114, 109464. https://doi.org/10.1016/j.intimp.2022.109464
Sawicka, B., Skiba, D., Pszczółkowski, P., & Krochmal-Marczak, B. (2022). Tuber Quality (pp. 45-90). In Sawicka, B., & Krochmal-Marczak, B. (Eds.), Jerusalem Artichoke Food Science and Technology. Interdisciplinary Biotechnological Advances. Springer. https://doi.org/10.1007/978-981-19-0805-7_3
Schuetz, A. N. (2019). Emerging agents of gastroenteritis: Aeromonas, Plesiomonas, and the diarrheagenic pathotypes of Escherichia coli. Seminars in Diagnostic Pathology,36(3), 187-192. https://doi.org/10.1053/j.semdp.2019.04.012
Smith, P., & Schuster, M. (2021). Inexpensive apparatus for high-quality imaging of microbial growth on agar plates. Frontiers in Microbiology, 12, 1750. https://doi.org/10.3389/fmicb.2021.689476
Stewart, G. T. (1968). Limitations of the germ theory. The Lancet, 291(7551), 1077-1081. https://doi.org/10.1016/S0140-6736(68)91425-6
Taylor, D. E. (1999). Bacterial tellurite resistance. Trends in Microbiology, 7(3), 111-115. https://doi.org/10.1016/S0966-842X(99)01454-7
Trivedi, A., Gosai, J., Nakane, D., & Shrivastava, A. (2022). Design principles of the rotary type 9 secretion system. Frontiers in Microbiology, 13, 845563. https://doi.org/10.3389/fmicb.2022.845563
Webb, S. A., & Kahler, C. M. (2008). Bench-to-bedside review: Bacterial virulence and subversion of host defences. Critical Care, 12(6), 234. https://doi.org/10.1186/cc7091
WHO. (2018). E. coli. 7 February 2018. Retrieved on January 2, 2023, from https://www.who.int/news-room/fact-sheets/detail/e-coli
Yang, D., Yang, Y., Qiao, P., Jiang, F., Zhang, X., Zhao, Z., Cai, T., Li, G., & Cai, W. (2023). Genomic island-encoded histidine kinase and response regulator coordinate mannose utilization with virulence in enterohemorrhagic Escherichia coli. Microbial Pathogenesis, 14(2), e0315222. https://doi.org/10.1128/mbio.03152-22
Yang, L., & Li, Y. (2005). AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium–tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7. Biosensors and Bioelectronics, 20(7), 1407-1416. https://doi.org/10.1016/j.bios.2004.06.024
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nurdan Filik, Fethi Filik

This work is licensed under a Creative Commons Attribution 4.0 International License.
