Calculation of Isothermal Compressibility and Bulk Modulus as a Function of Pressure in a Perovskite-Like Framework of [(C3H7)4N] [Mn(N(CN)2)3]

Authors

Keywords:

Perovskite-like frameworks, Structural phase transition, Grüneisen value, Bulk modulus, Isothermal compressibility

Abstract

The many distortions in solid material that are most easily triggered by factors like pressure are called its structural degrees of freedom. Zeolites, perovskites, coordination polymers and metal-organic frameworks (MOFs) are all members of the extensive and significant family of solids known as framework materials. In the last decade, it has been shown that perovskite-like framework materials have great potential applicable in solar panel cell production. The Perovskite-like framework, [(C3H7)4N][Mn(N(CN)2)3] ([TPrA][Mn(dca)3], in short), has recently attracted scientists, due to its magnetism, ferroelectricity, luminescence, switchable dielectric behaviour, multiferroic behaviour, non-linear optical properties and also photovoltaic properties. Exerted pressure causes changes in the structural, optical, and electronic properties of perovskite and perovskite-like compounds. As a result of these effects, these compounds present phase transitions at certain pressures. The [TPrA][Mn(dca)3] compound also exhibits two structural phase transitions at 0.3 GPa and 3.0 GPa pressure. In this study, we calculated some important thermodynamic parameters, which are the isothermal Grüneisen value, isothermal compressibility, and Bulk modulus, as a function of pressure to analyse phase transition dynamics by using observed volume and frequency values from the literature. The Bulk modulus values were determined at 9.86 GPa for the Pcnb -phase and 36 GPa for the P21/n -phase by using calculated isothermal compressibility values. Our results confirm that the perovskite-like [TPrA][Mn(dca)3] compound is a good candidate for solar panel cell production, as corroborated in the literature.

References

Agyei-Tuffour, B., Doumon, N. Y., Rwenyagila, E. R., Asare, J., Oyewole, O. K., Shen, Z., Petoukhoff, C. E., Zebaze Kana, M. G., Ocarroll, D. M., & Soboyejo, W O. (2017). Pressure effects on interfacial surface contacts and performance of organic solar cells. Journal of Applied Physics, 122(20), 205501. https://doi.org/10.1063/1.5001765

Agyei-Tuffour, B., Rwenyagila, E. R., Asare, J., Oyewole, O. K., Zebaze Kana, M. G., O’Carroll, D. M., & Soboyejo, W. O. (2016). Influence of pressure on contacts between layers in organic photovoltaic cells. Advanced Materials Research, 1132, 204-216. https://doi.org/10.4028/www.scientific.net/AMR.1132.204

Assirey, E. A. R. (2019). Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharmaceutical Journal, 27(6), 817-829. https://doi.org/10.1016/j.jsps.2019.05.003

Bermúdez-García, J. M., Sánchez-Andújar, M., Yáñez-Vilar, S., Castro-García, S., Artiaga, R., López-Beceiro, J., Botana, L., Alegría, Á., & Señarís-Rodríguez, M. A. (2015). Role of temperature and pressure on the multisensitive multiferroic dicyanamide framework [TPrA][Mn(dca)3] with perovskite-like structure. Inorganic Chemistry, 54(24), 11680-11687. https://doi.org/10.1021/acs.inorgchem.5b01652

Bermúdez-García, J. M., Sánchez-Andújar, M., Castro-García, S., López-Beceiro, J., Artiaga, R., & Señarís-Rodríguez, M. A. (2017a). Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nature Communications, 8(1), 15715. https://doi.org/10.1038/ncomms15715

Bermúdez-García, J. M., Sánchez-Andújar, M., & Señarís-Rodríguez, M. A. (2017b). A new playground for organic–inorganic hybrids: Barocaloric materials for pressure-induced solid-state cooling. The Journal of Physical Chemistry Letters, 8(18), 4419-4423. https://doi.org/10.1021/acs.jpclett.7b01845

Bermúdez-García, J. M., Yáñez-Vilar, S., García-Fernández, A., Sánchez-Andújar, M., Castro-García, S., López-Beceiro, J., Artiaga, R., Dilshad, M., Moya, X., & Señarís-Rodríguez, M. A. (2018). Giant barocaloric tunability in [(CH3CH2CH2)4N]Cd[N(CN)2]3 hybrid perovskite. Journal of Materials Chemistry C, 6(37), 9867-9874. https://doi.org/10.1039/C7TC03136J

Einstein, A. (1907). Die Plancksche Theorie der Strahlung und die Theorie der spezifischen wärme. Annalen der Physik, 327(1), 180-190. https://doi.org/10.1002/andp.19063270110

Grinberg, I., West, D. V., Torres, M., Gou, G., Stein, D. M., Wu, L., Chen, G., Gallo, E. M., Akbashev, A. R., Davies, P. K., Spanier, J. E., & Rappe, A. M. (2013). Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature, 503(7477), 509-512. https://doi.org/10.1038/nature12622

Grüneisen, E. (1912). Theorie des festen Zustandes einatomiger Elemente. Annalen der Physik, 344(12), 257-306. https://doi.org/10.1002/andp.19123441202

Huang, J., Yuan, Y., Shao, Y., & Yan, Y. (2017). Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews Materials, 2(7), 17042. https://doi.org/10.1038/natrevmats.2017.42

Jošt, M., Köhnen, E., Al-Ashouri, A., Bertram, T., Tomšič, Š., Magomedov, A., Kasparavicius, E., Kodalle, T., Lipovšek, B., Getautis, V., Schlatmann, R., Kaufmann, C. A., Albrecht, S., & Topič, M. (2022). Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Letters, 7(4), 1298-1307. https://doi.org/10.1021/acsenergylett.2c00274

Kurt, A. (2020). Pressure dependence of the Raman modes for orthorhombic and monoclinic phases of CsPbI3 at room temperature. Journal of Applied Physics, 128(7), 075106. https://doi.org/10.1063/5.0012355

Kurt, A. (2022). Calculation of Gruneisen parameter, compressibility, and bulk modulus as functions of pressure in (C6H5CH2NH3)2PBI4. Çanakkale Onsekiz Mart University Journal of Advanced Research in Natural and Applied Sciences, 8(1), 63-75. https://doi.org/10.28979/jarnas.1003367

Li, Q., Zhang, L., Chen, Z., & Quan, Z. (2019). Metal halide perovskites under compression. Journal of Materials Chemistry A, 7(27), 16089-16108. https://doi.org/10.1039/C9TA04930D

Mączka, M., Collings, I. E., Leite, F. F., & Paraguassu, W. (2019). Raman and single-crystal X-ray diffraction evidence of pressure-induced phase transitions in a perovskite-like framework of [(C3H7)4N] [Mn(N(CN)2)3]. Dalton Transactions, 48(25), 9072-9078. https://doi.org/10.1039/C9DT01648A

Min, H., Lee, D. Y., Kim, J., Kim, G., Lee, K. S., Kim, J., Paik, M. J., Kim, Y. K., Kim, K. S., Kim, M. G., Shin, T. J., & Seok, S. I. (2021). Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 598(7881), 444-450. https://doi.org/10.1038/s41586-021-03964-8

Oyelade, O. V., Oyewole, O. K., Oyewole, D. O., Adeniji, S. A., Ichwani, R., Sanni, D. M., & Soboyejo, W. O. (2020). Pressure-assisted fabrication of perovskite solar cells. Scientific Reports, 10(1), 7183. https://doi.org/10.1038/s41598-020-64090-5

Shen, Z., Wang, X., Luo, B., & Li, L. (2015). BaTiO3–BiYbO3 perovskite materials for energy storage applications. Journal of Materials Chemistry A, 3(35), 18146-18153. https://doi.org/10.1039/C5TA03614C

Stacey, F. D., & Hodgkinson, J. H. (2019). Thermodynamics with the Grüneisen parameter: Fundamentals and applications to high pressure physics and geophysics. Physics of the Earth and Planetary Interiors, 286, 42-68. https://doi.org/10.1016/j.pepi.2018.10.006

Tan, J. C., & Cheetham, A. K. (2011). Mechanical properties of hybrid inorganic–organic framework materials: Establishing fundamental structure–property relationships. Chemical Society Reviews, 40(2), 1059-1080. https://doi.org/10.1039/C0CS00163E

Wang, W., Tadé, M. O., & Shao, Z. (2015). Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 44(15), 5371-5408. https://doi.org/10.1039/C5CS00113G

Xiao, G., Cao, Y., Qi, G., Wang, L., Liu, C., Ma, Z., Yang, X., Sui, Y., Zheng, W., & Zou, B. (2017). Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals. Journal of the American Chemical Society, 139(29), 10087-10094. https://doi.org/10.1021/jacs.7b05260

Xiao, G., Zhu, C., Ma, Y., Liu, B., Zou, G., & Zou, B. (2014). Unexpected room‐temperature ferromagnetism in nanostructured Bi2Te3. Angewandte Chemie International Edition, 53(3), 729-733. https://doi.org/10.1002/anie.201309416

Yurtseven, H., & Cebeci, A. (2015). Pressure dependence of the Raman modes related to the phase transitions in cyclohexane. Acta Physica Polonica A, 127(3), 744-747. https://doi.org/10.12693/aphyspola.127.744

Yurtseven, H., & Kurt, M. (2011). Pressure dependence of the Raman frequency shifts related to the thermodynamic quantities in phase II of s-triazine. Indian Journal of Physics, 85, 615-628. https://doi.org/10.1007/s12648-011-0064-0

Yurtseven, H., & Ünlü, D. (2015). Temperature and pressure effect on the Raman frequencies calculated from the crystal volume in the

γ-phase of solid nitrogen. Journal of Applied Spectroscopy, 82(4), 700-704. https://doi.org/10.1007/s10812-015-0166-0

Downloads

Published

2024-05-24

How to Cite

Avcı, S., & Kurt, M. (2024). Calculation of Isothermal Compressibility and Bulk Modulus as a Function of Pressure in a Perovskite-Like Framework of [(C3H7)4N] [Mn(N(CN)2)3]. Acta Natura Et Scientia, 5(1), 1–10. Retrieved from https://prensipjournals.com/ojs/index.php/actanatsci/article/view/247

Issue

Section

Original Research Papers