Sustainable Food Ingredients: Micro-Algae as Source Bioactive Compounds
DOI:
https://doi.org/10.61326/foodb.v3i2.315Keywords:
Bioactive compounds, Food sustainability, Functional additives, Micro-algae, Sustainable ingredientsAbstract
Microalgae hold immense promise as a sustainable, bioactive source of functional food additives, presenting a unique profile of polyunsaturated fatty acids (PUFAs), carotenoids, vitamins, peptides, and polysaccharides with notable health benefits. Known for their ability to produce compounds like astaxanthin and lutein, Haematococcus pluvialis, Chlorella zofingiensis, and Spirulina contribute to antioxidant, anti-inflammatory, cardiovascular, and visual health when incorporated into food products. Unlike traditional crops, microalgae cultivation requires fewer resources (minimizing land, water, and carbon footprint) while achieving higher photosynthetic efficiency, making them a sustainable solution well-aligned with modern food production goals. However, despite their potential, the mainstream adoption of microalgae-derived bioactives is limited by challenges such as high production costs, complex extraction processes, and stringent regulatory barriers, particularly in markets like the EU. To address these limitations, advancements in photobioreactor technology, biorefinery approaches, and genetic engineering have shown promise in enhancing yield and reducing costs, thereby positioning microalgae as economically viable alternatives to synthetic additives. Furthermore, innovations in encapsulation and bioavailability improvement are advancing, making microalgal compounds more effective and stable in various food systems. This article explores the significant role microalgae could play in food sustainability, reviewing recent research and industry insights to propose practical solutions that encourage broader integration of microalgal bioactives in global markets. Through strategic technological improvements and supportive policy frameworks, the food industry could embrace microalgae-derived compounds, paving the way for resilient food systems that address consumer demands for natural, health-promoting ingredients. With ongoing academic and industrial collaboration, microalgae’s high nutritional value and environmental benefits can be leveraged to support both human health and ecological sustainability, signifying their crucial place in future food innovation.
References
Ambati, R. R., Phang, S. M., Ravi, S., & Aswathanarayana, R. G. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Marine Drugs, 12(1), 128-152. https://doi.org/10.3390/md12010128
Bernaerts, T. M., Gheysen, L., Kyomugasho, C., Kermani, Z. J., Vandionant, S., Foubert, I., Hendrickx, M. E., & Van Loey, A. M. (2018). Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. Algal Research, 32, 150-161. https://doi.org/10.1016/j.algal.2018.03.017
Caporgno, M. P., & Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5, 58. https://doi.org/10.3389/fnut.2018.00058
Challouf, R., Trabelsi, L., Ben Dhieb, R., El Abed, O., Yahia, A., Ghozzi, K., Ammar, J. B., Omran, H., & Ben Ouada, H. (2011). Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Brazilian Archives of Biology and Technology, 54(4), 831-838. https://doi.org/10.1590/S1516-89132011000400024
Cioanca, O., Lungu, I. -I., Mita-Baciu, I., Robu, S., Burlec, A. F., Hancianu, M., & Crivoi, F. (2024). Extraction and purification of catechins from tea leaves: An overview of methods, advantages, and disadvantages. Separations, 11(6), 171. https://doi.org/10.3390/separations11060171
Citi, V., Torre, S., Flori, L., Usai, L., Aktay, N., Dunford, N. T., Lutzu, G. A., & Nieri, P. (2024). Nutraceutical features of the phycobiliprotein C-phycocyanin: Evidence from Arthrospira platensis (Spirulina). Nutrients, 16(11), 1752. https://doi.org/10.3390/nu16111752
Clément, G., Giddey, C., & Menzi, R. (1967). Amino acid composition and nutritive value of the alga Spirulina maxima. Journal of the Science of Food and Agriculture, 18(11), 497-501. https://doi.org/10.1002/jsfa.2740181101
Egner, P. A., Wang, J. B., Zhu, Y. R., Zhang, B. C., Wu, Y., Zhang, Q. N., Qian, G. S., Kuang, S. Y., Gange, S. J., Jacobson, L. P., Helzlsouer, K. J., Bailey, G. S., & Kensler, T. W. (2001). Chlorophyllin intervention reduces aflatoxin–DNA adducts in individuals at high risk for liver cancer. Proceedings of the National Academy of Sciences, 98(25), 14601-14606. https://doi.org/10.1073/pnas.251536898
Eriksen, N. T. (2016). Research trends in the dominating microalgal pigments, β-carotene, astaxanthin, and phycocyanin used in feed, in foods, and in health applications. Journal of Nutrition & Food Sciences, 6(3), 1000507. https://doi.org/10.4172/2155-9600.1000507
Fernandes, V., & Mamatha, B. S. (2023). Fucoxanthin, a functional food ingredient: Challenges in bioavailability. Current Nutrition Reports, 12(4), 567-580. https://doi.org/10.1007/s13668-023-00492-x
Ferruzzi, M. G., & Blakeslee, J. (2007). Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research, 27(1), 1-12. https://doi.org/10.1016/j.nutres.2006.12.003
Garcia-Pichel, F., & Castenholz, R. W. (1993). Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Applied and Environmental Microbiology, 59(1), 163-169. https://doi.org/10.1128/aem.59.1.163-169.1993
Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24, 1477-1486. https://doi.org/10.1007/s10811-012-9804-6
Harrison, J. W., Levin, S. E., & Trabin, B. (1954). The safety and fate of potassium sodium copper chlorophyllin. Journal of the American Pharmaceutical Association (Scientific ed.), 43(12), 722-737. https://doi.org/10.1002/jps.3030431206
Heo, S. J., Park, E. J., Lee, K. W., & Jeon, Y. J. (2005). Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresource Technology, 96(14), 1613-1623. https://doi.org/10.1016/j.biortech.2004.07.013
Jannel, S., Caro, Y., Bermudes, M., & Petit, T. (2020). Novel insights into the biotechnological production of Haematococcus pluvialis-derived astaxanthin: Advances and key challenges to allow its industrial use as novel food ingredient. Journal of Marine Science and Engineering, 8(10), 789. https://doi.org/10.3390/jmse8100789
Jo, W. S., Choi, Y. J., Kim, H. J., Nam, B. H., Hong, S. H., Lee, G. A., & Jeong, M. H. (2010). Anti-inflammatory effect of microalgal extracts from Tetraselmis suecica. Food Science and Biotechnology, 19, 1519-1528. https://doi.org/10.1007/s10068-010-0216-6
Kephart, J. C. (1955). Chlorophyll derivatives—Their chemistry? commercial preparation and uses. Economic Botany, 9, 3-38. https://doi.org/10.1007/BF02984956
Lee, J. B., Hayashi, K., Hirata, M., Kuroda, E., Suzuki, E., Kubo, Y., & Hayashi, T. (2006). Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biological and Pharmaceutical Bulletin, 29(10), 2135-2139. https://doi.org/10.1248/bpb.29.2135
Lee, S. J., Bai, S. K., Lee, K. S., Namkoong, S., Na, H. J., Ha, K. S., Han, J. A., Yim, S. V., Chang, K., Kwon, Y. G., Lee, S. K., & Kim, Y. M. (2003). Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing IκB kinase-dependent NF-κB activation. Molecules and Cells, 16(1), 97-105. https://doi.org/10.1016/S1016-8478(23)13772-1
Ljubic, A., Jacobsen, C., Holdt, S. L., & Jakobsen, J. (2020). Microalgae Nannochloropsis oceanica as a future new natural source of vitamin D3. Food Chemistry, 320, 126627. https://doi.org/10.1016/j.foodchem.2020.126627
Lucas, B. F., de Morais, M. G., Santos, T. D., & Costa, J. A. V. (2018). Spirulina for snack enrichment: Nutritional, physical and sensory evaluations. LWT, 90, 270-276. https://doi.org/10.1016/j.lwt.2017.12.032
Lum, K. K., Kim, J., & Lei, X. G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology, 4, 53.
Mehariya, S., Goswami, R. K., Verma, P., Lavecchia, R., & Zuorro, A. (2021). Integrated approach for wastewater treatment and biofuel production in microalgae biorefineries. Energies, 14(8), 2282. https://doi.org/10.3390/en14082282
Mendes, A., Reis, A., Vasconcelos, R., Guerra, P., & Lopes da Silva, T. (2009). Crypthecodinium cohnii with emphasis on DHA production: A review. Journal of Applied Phycology, 21, 199-214. https://doi.org/10.1007/s10811-008-9351-3
Moghadasian, M. H., & Frohlich, J. J. (1999). Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: Clinical and experimental evidence. The American Journal of Medicine, 107(6), 588-594. https://doi.org/10.1016/s0002-9343(99)00285-5
Mtaki, K., Kyewalyanga, M. S., & Mtolera, M. S. (2020). Assessment of antioxidant contents and free radical-scavenging capacity of Chlorella vulgaris cultivated in low cost media. Applied Sciences, 10(23), 8611. https://doi.org/10.3390/app10238611
Nollet, L. M. L., & Ahamad, J. (2024). Bioactive compounds of edible oils and fats: Health benefits, risks, and analysis. CRC Press. https://doi.org/10.1201/9781003450719
Nwachukwu, I. D., Udenigwe, C. C., & Aluko, R. E. (2016). Lutein and zeaxanthin: Production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends in Food Science & Technology, 49, 74-84. https://doi.org/10.1016/j.tifs.2015.12.005
Pan-utai, W., Boonpok, S., & Pornpukdeewattana, S. (2021). Combination of mechanical and chemical extraction of astaxanthin from Haematococcus pluvialis and its properties of microencapsulation. Biocatalysis and Agricultural Biotechnology, 33, 101979. https://doi.org/10.1016/j.bcab.2021.101979
Patel, A., Matsakas, L., Rova, U., & Christakopoulos, P. (2018). Heterotrophic cultivation of Auxenochlorella protothecoides using forest biomass as a feedstock for sustainable biodiesel production. Biotechnology for Biofuels, 11, 1-16. https://doi.org/10.1186/s13068-018-1173-1
Qiao, H., Cong, C., Sun, C., Li, B., Wang, J., & Zhang, L. (2016). Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum. Aquaculture, 452, 311-317. https://doi.org/10.1016/j.aquaculture.2015.11.011
Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Frontiers in Plant Science, 7, 531. https://doi.org/10.3389/fpls.2016.00531
Torres-Tiji, Y., Fields, F. J., & Mayfield, S. P. (2020). Microalgae as a future food source. Biotechnology Advances, 41, 107536. https://doi.org/10.1016/j.biotechadv.2020.107536
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Pınar Baldemir, Şükran Çaklı

This work is licensed under a Creative Commons Attribution 4.0 International License.