Sustainable Food Ingredients: Micro-Algae as Source Bioactive Compounds

Authors

DOI:

https://doi.org/10.61326/foodb.v3i2.315

Keywords:

Bioactive compounds, Food sustainability, Functional additives, Micro-algae, Sustainable ingredients

Abstract

Microalgae hold immense promise as a sustainable, bioactive source of functional food additives, presenting a unique profile of polyunsaturated fatty acids (PUFAs), carotenoids, vitamins, peptides, and polysaccharides with notable health benefits. Known for their ability to produce compounds like astaxanthin and lutein, Haematococcus pluvialis, Chlorella zofingiensis, and Spirulina contribute to antioxidant, anti-inflammatory, cardiovascular, and visual health when incorporated into food products. Unlike traditional crops, microalgae cultivation requires fewer resources (minimizing land, water, and carbon footprint) while achieving higher photosynthetic efficiency, making them a sustainable solution well-aligned with modern food production goals. However, despite their potential, the mainstream adoption of microalgae-derived bioactives is limited by challenges such as high production costs, complex extraction processes, and stringent regulatory barriers, particularly in markets like the EU. To address these limitations, advancements in photobioreactor technology, biorefinery approaches, and genetic engineering have shown promise in enhancing yield and reducing costs, thereby positioning microalgae as economically viable alternatives to synthetic additives. Furthermore, innovations in encapsulation and bioavailability improvement are advancing, making microalgal compounds more effective and stable in various food systems. This article explores the significant role microalgae could play in food sustainability, reviewing recent research and industry insights to propose practical solutions that encourage broader integration of microalgal bioactives in global markets. Through strategic technological improvements and supportive policy frameworks, the food industry could embrace microalgae-derived compounds, paving the way for resilient food systems that address consumer demands for natural, health-promoting ingredients. With ongoing academic and industrial collaboration, microalgae’s high nutritional value and environmental benefits can be leveraged to support both human health and ecological sustainability, signifying their crucial place in future food innovation.

References

Ambati, R. R., Phang, S. M., Ravi, S., & Aswathanarayana, R. G. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Marine Drugs, 12(1), 128-152. https://doi.org/10.3390/md12010128

Bernaerts, T. M., Gheysen, L., Kyomugasho, C., Kermani, Z. J., Vandionant, S., Foubert, I., Hendrickx, M. E., & Van Loey, A. M. (2018). Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. Algal Research, 32, 150-161. https://doi.org/10.1016/j.algal.2018.03.017

Caporgno, M. P., & Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5, 58. https://doi.org/10.3389/fnut.2018.00058

Challouf, R., Trabelsi, L., Ben Dhieb, R., El Abed, O., Yahia, A., Ghozzi, K., Ammar, J. B., Omran, H., & Ben Ouada, H. (2011). Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Brazilian Archives of Biology and Technology, 54(4), 831-838. https://doi.org/10.1590/S1516-89132011000400024

Cioanca, O., Lungu, I. -I., Mita-Baciu, I., Robu, S., Burlec, A. F., Hancianu, M., & Crivoi, F. (2024). Extraction and purification of catechins from tea leaves: An overview of methods, advantages, and disadvantages. Separations, 11(6), 171. https://doi.org/10.3390/separations11060171

Citi, V., Torre, S., Flori, L., Usai, L., Aktay, N., Dunford, N. T., Lutzu, G. A., & Nieri, P. (2024). Nutraceutical features of the phycobiliprotein C-phycocyanin: Evidence from Arthrospira platensis (Spirulina). Nutrients, 16(11), 1752. https://doi.org/10.3390/nu16111752

Clément, G., Giddey, C., & Menzi, R. (1967). Amino acid composition and nutritive value of the alga Spirulina maxima. Journal of the Science of Food and Agriculture, 18(11), 497-501. https://doi.org/10.1002/jsfa.2740181101

Egner, P. A., Wang, J. B., Zhu, Y. R., Zhang, B. C., Wu, Y., Zhang, Q. N., Qian, G. S., Kuang, S. Y., Gange, S. J., Jacobson, L. P., Helzlsouer, K. J., Bailey, G. S., & Kensler, T. W. (2001). Chlorophyllin intervention reduces aflatoxin–DNA adducts in individuals at high risk for liver cancer. Proceedings of the National Academy of Sciences, 98(25), 14601-14606. https://doi.org/10.1073/pnas.251536898

Eriksen, N. T. (2016). Research trends in the dominating microalgal pigments, β-carotene, astaxanthin, and phycocyanin used in feed, in foods, and in health applications. Journal of Nutrition & Food Sciences, 6(3), 1000507. https://doi.org/10.4172/2155-9600.1000507

Fernandes, V., & Mamatha, B. S. (2023). Fucoxanthin, a functional food ingredient: Challenges in bioavailability. Current Nutrition Reports, 12(4), 567-580. https://doi.org/10.1007/s13668-023-00492-x

Ferruzzi, M. G., & Blakeslee, J. (2007). Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research, 27(1), 1-12. https://doi.org/10.1016/j.nutres.2006.12.003

Garcia-Pichel, F., & Castenholz, R. W. (1993). Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Applied and Environmental Microbiology, 59(1), 163-169. https://doi.org/10.1128/aem.59.1.163-169.1993

Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24, 1477-1486. https://doi.org/10.1007/s10811-012-9804-6

Harrison, J. W., Levin, S. E., & Trabin, B. (1954). The safety and fate of potassium sodium copper chlorophyllin. Journal of the American Pharmaceutical Association (Scientific ed.), 43(12), 722-737. https://doi.org/10.1002/jps.3030431206

Heo, S. J., Park, E. J., Lee, K. W., & Jeon, Y. J. (2005). Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresource Technology, 96(14), 1613-1623. https://doi.org/10.1016/j.biortech.2004.07.013

Jannel, S., Caro, Y., Bermudes, M., & Petit, T. (2020). Novel insights into the biotechnological production of Haematococcus pluvialis-derived astaxanthin: Advances and key challenges to allow its industrial use as novel food ingredient. Journal of Marine Science and Engineering, 8(10), 789. https://doi.org/10.3390/jmse8100789

Jo, W. S., Choi, Y. J., Kim, H. J., Nam, B. H., Hong, S. H., Lee, G. A., & Jeong, M. H. (2010). Anti-inflammatory effect of microalgal extracts from Tetraselmis suecica. Food Science and Biotechnology, 19, 1519-1528. https://doi.org/10.1007/s10068-010-0216-6

Kephart, J. C. (1955). Chlorophyll derivatives—Their chemistry? commercial preparation and uses. Economic Botany, 9, 3-38. https://doi.org/10.1007/BF02984956

Lee, J. B., Hayashi, K., Hirata, M., Kuroda, E., Suzuki, E., Kubo, Y., & Hayashi, T. (2006). Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biological and Pharmaceutical Bulletin, 29(10), 2135-2139. https://doi.org/10.1248/bpb.29.2135

Lee, S. J., Bai, S. K., Lee, K. S., Namkoong, S., Na, H. J., Ha, K. S., Han, J. A., Yim, S. V., Chang, K., Kwon, Y. G., Lee, S. K., & Kim, Y. M. (2003). Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing IκB kinase-dependent NF-κB activation. Molecules and Cells, 16(1), 97-105. https://doi.org/10.1016/S1016-8478(23)13772-1

Ljubic, A., Jacobsen, C., Holdt, S. L., & Jakobsen, J. (2020). Microalgae Nannochloropsis oceanica as a future new natural source of vitamin D3. Food Chemistry, 320, 126627. https://doi.org/10.1016/j.foodchem.2020.126627

Lucas, B. F., de Morais, M. G., Santos, T. D., & Costa, J. A. V. (2018). Spirulina for snack enrichment: Nutritional, physical and sensory evaluations. LWT, 90, 270-276. https://doi.org/10.1016/j.lwt.2017.12.032

Lum, K. K., Kim, J., & Lei, X. G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology, 4, 53.

Mehariya, S., Goswami, R. K., Verma, P., Lavecchia, R., & Zuorro, A. (2021). Integrated approach for wastewater treatment and biofuel production in microalgae biorefineries. Energies, 14(8), 2282. https://doi.org/10.3390/en14082282

Mendes, A., Reis, A., Vasconcelos, R., Guerra, P., & Lopes da Silva, T. (2009). Crypthecodinium cohnii with emphasis on DHA production: A review. Journal of Applied Phycology, 21, 199-214. https://doi.org/10.1007/s10811-008-9351-3

Moghadasian, M. H., & Frohlich, J. J. (1999). Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: Clinical and experimental evidence. The American Journal of Medicine, 107(6), 588-594. https://doi.org/10.1016/s0002-9343(99)00285-5

Mtaki, K., Kyewalyanga, M. S., & Mtolera, M. S. (2020). Assessment of antioxidant contents and free radical-scavenging capacity of Chlorella vulgaris cultivated in low cost media. Applied Sciences, 10(23), 8611. https://doi.org/10.3390/app10238611

Nollet, L. M. L., & Ahamad, J. (2024). Bioactive compounds of edible oils and fats: Health benefits, risks, and analysis. CRC Press. https://doi.org/10.1201/9781003450719

Nwachukwu, I. D., Udenigwe, C. C., & Aluko, R. E. (2016). Lutein and zeaxanthin: Production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends in Food Science & Technology, 49, 74-84. https://doi.org/10.1016/j.tifs.2015.12.005

Pan-utai, W., Boonpok, S., & Pornpukdeewattana, S. (2021). Combination of mechanical and chemical extraction of astaxanthin from Haematococcus pluvialis and its properties of microencapsulation. Biocatalysis and Agricultural Biotechnology, 33, 101979. https://doi.org/10.1016/j.bcab.2021.101979

Patel, A., Matsakas, L., Rova, U., & Christakopoulos, P. (2018). Heterotrophic cultivation of Auxenochlorella protothecoides using forest biomass as a feedstock for sustainable biodiesel production. Biotechnology for Biofuels, 11, 1-16. https://doi.org/10.1186/s13068-018-1173-1

Qiao, H., Cong, C., Sun, C., Li, B., Wang, J., & Zhang, L. (2016). Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum. Aquaculture, 452, 311-317. https://doi.org/10.1016/j.aquaculture.2015.11.011

Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Frontiers in Plant Science, 7, 531. https://doi.org/10.3389/fpls.2016.00531

Torres-Tiji, Y., Fields, F. J., & Mayfield, S. P. (2020). Microalgae as a future food source. Biotechnology Advances, 41, 107536. https://doi.org/10.1016/j.biotechadv.2020.107536

Downloads

Published

30-12-2024

Issue

Section

Review Articles