Developments in Radiofrequency Processing Applications on Food of Animal Origin

Authors

DOI:

https://doi.org/10.61326/foodb.v3i2.320

Keywords:

Dielectric heating, Meat, Novel technique , Radiofrequency, Seafood

Abstract

Radio frequency (RF) treatment is one of the novel dielectric heating techniques for foods. It is an indirect process whereby electrical energy is initially transformed into electromagnetic radiation, which then generates heat within the food. Radiofrequency heating has been found some advantages like rapid heating or deep penetration into food compare to conventional methods. Traditional heat treatments applied to animal products can lead to quality losses, color and texture changes, overheating problems and other undesirable side effects. RF treatment has the potential to minimize these problems, improve organoleptic quality, reduce process time and save energy. Recently, the most investigated methods for animal origin foods are RF pasteurization/sterilization, RF-supported thawing methods, RF heating or cooking and the results obtained are promising. Radiofrequency technique is also investigated for following purposes; blanching, post-bake drying, roasting and disinfection. The new generation of RF studies explore other aspects, including the discovery of dielectric properties of foods, the evaluation of efficiency and quality effects, environmental sustainability of RF technologies and the improvement of RF system performance. Also combined systems are investigated such as radiofrequency-assisted cryogenic freezing. This paper reviewed principles of RF, overview situation of RF treatment methods and recent literature on RF applications on food of animal origin.

References

Altemimi, A., Aziz, S. N., Al-Hilphy, A. R. S., Lakhssassi, N., Watson, D. G., & Ibrahim, S. A. (2019). Critical review of radio-frequency (RF) heating applications in food processing. Food Quality and Safety, 3(2), 81-91. https://doi.org/10.1093/fqsafe/fyz002

Aymerich, T., Picouet, P., & Monfort, J. (2008). Decontamination technologies for meat products. Meat Science, 78(1-2), 114-129. https://doi.org/10.1016/j.meatsci.2007.07.007

Awuah, G. B., Ramaswamy, H. S., & Tang, J. (2015). Radio-frequency heating in food processing: Principles and applications. CRC Press.

Ballom, K., Dhowlaghar, N., Tsai, H. C., Yang, R., Tang, J., & Zhu, M. J. (2021). Radiofrequency pasteurization against Salmonella and Listeria monocytogenes in cocoa powder. LWT, 145, 111490. https://doi.org/10.1016/j.lwt.2021.111490

Bedane, T. F., Chen, L., Marra, F., & Wang, S. (2017). Experimental study of radio frequency (RF) thawing of foods with movement on conveyor belt. Journal of Food Engineering, 201, 17-25. https://doi.org/10.1016/j.jfoodeng.2017.01.010

Bedane, T. F., Altin, O., Erol, B., Marra, F., & Erdogdu, F. (2018). Thawing of frozen food products in a staggered through-field electrode radio frequency system: A case study for frozen chicken breast meat with effects on drip loss and texture. Innovative Food Science and Emerging Technologies, 50, 139-147. https://doi.org/10.1016/j.ifset.2018.09.001

Bermudez-Aguirre, D., & Niemira, B. A. (2023). Radio frequency treatment of food: A review on pasteurization and disinfestation. Foods, 12(16), 3057. https://doi.org/10.3390/foods12163057

Cai, L., Cao, M., Regenstein, J., & Cao, A. (2019). Recent advances in food thawing technologies. Comprehensive Reviews in Food Science and Food Safety, 18(4), 953-970. https://doi.org/10.1111/1541-4337.12458

Cakmak, H., & Tavman, S. (2011). Radyo frekans sistemi ve gıda sanayiindeki uygulamaları. Gıda, 36(6), 365-372. (In Turkish)

Calero, M., Clemente, G., Fartdinov, D., Bañón, S., Muñoz, I., & Sanjuán, N. (2022). Upscaling via a prospective LCA: A case study on tomato homogenate using a near-to-market pasteurisation technology. Sustainability, 14(3), 1716. https://doi.org/10.3390/su14031716

Chen, X., Liu, Y., Zhang, R., Zhu, H., Li, F., Yang, D., & Jiao, Y. (2022). Radio frequency drying behavior in porous media: a case study of potato cube with computer modeling. Foods, 11(20), 3279. https://doi.org/10.3390/foods11203279

Cui, B., Sun, Y., Wang, K., Liu, Y., Fu, H., Wang, Y., & Wang, Y. (2022). Pasteurization mechanism on the cellular level of radio frequency heating and its possible non-thermal effect. Innovative Food Science and Emerging Technologies, 78, 103026. https://doi.org/10.1016/j.ifset.2022.103026

Di Rosa, A. R., Bressan, F., Leone, F., Falqui, L., & Chiofalo, V. (2019). Radio frequency heating on food of animal origin: A review. European Food Research and Technology, 245, 1787-1797. https://doi.org/10.1007/s00217-019-03319-8

Fathi, P., Karmakar, N. C., Bhattacharya, M., & Bhattacharya, S. (2020). Potential chipless RFID sensors for food packaging applications: A review. IEEE Sensors Journal, 20(17), 9618-9636. https://doi.org/10.1109/JSEN.2020.2991751

Fiore, A., Di Monaco, R., Cavella, S., Visconti, A., Karneili, O., Bernhardt, S., & Fogliano, V. (2013). Chemical profile and sensory properties of different foods cooked by a new radiofrequency oven. Food Chemistry, 139(1-4), 515-520. https://doi.org/10.1016/j.foodchem.2013.01.028

Gao, J., Wu, M., Du, S., Zhang, H., Wang, S., & Ling, B. (2023). Recent advances in food processing by radio frequency heating techniques: A review of equipment aspects. Journal of Food Engineering, 357, 111609. https://doi.org/10.1016/j.jfoodeng.2023.111609

Geiker, N. R. W., Bertram, H. C., Mejborn, H., Dragsted, L. O., Kristensen, L., Carrascal, J. R., Bügel, S., & Astrup, A. (2021). Meat and human health—current knowledge and research gaps. Foods, 10(7), 1556. https://doi.org/10.3390/foods10071556

Goñi, S. M., D’Amore, M., Della Valle, M., Olivera, D. F., Salvadori, V. O., & Marra, F. (2022). Effect of load spatial configuration on the heating of chicken meat assisted by radio frequency at 40.68 MHz. Foods, 11(8), 1096. https://doi.org/10.3390/foods11081096

Guo, C., Mujumdar, A. S., & Zhang, M. (2019). New development in radio frequency heating for fresh food processing: A review. Food Engineering Reviews, 11, 29-43. https://doi.org/10.1007/s12393-018-9184-z

Han, R., He, J., Chen, Y., Li, F., Shi, H., & Jiao, Y. (2022). Effects of radio frequency tempering on the temperature distribution and physiochemical properties of salmon (Salmo salar). Foods, 11(6), 893. https://doi.org/10.3390/foods11060893

Hu, S., Zhao, Y., Hayouka, Z., Wang, D., & Jiao, S. (2018). Inactivation kinetics for Salmonella typhimurium in red pepper powders treated by radio frequency heating. Food Control, 85, 437-442. https://doi.org/10.1016/j.foodcont.2017.10.034

Huang, Z., Marra, F., Subbiah, J., & Wang, S. (2018). Computer simulation for improving radio frequency (RF) heating uniformity of food products: A review. Critical Reviews in Food Science and Nutrition, 58(6), 1033-1057. https://doi.org/10.1080/10408398.2016.1253000

Hussain, S. Z., Iftikhar, F., Naseer, B., Altaf, U., Reshi, M., & Nidoni, U. K. (2021). Effect of radiofrequency-induced accelerated aging on physicochemical, cooking, pasting, and textural properties of rice. LWT, 139, 110595. https://doi.org/10.1016/j.lwt.2020.110595

Jantapirak, S., Takahashi, C., & Uemura, K. (2021). Effect of radiofrequency heating of vacuum-packed nitrite-free sausage on quality properties and microorganism inactivation. Bioscience, Biotechnology, and Biochemistry, 85(4), 907-915. https://doi.org/10.1093/bbb/zbaa099

Jiang, J., Wang, H., Guo, X., & Wang, X. (2021). Effect of radio frequency tempering on the color of frozen tilapia fillets. LWT, 142, 110897. https://doi.org/10.1016/j.lwt.2021.110897

Jiang, H., Yang, H., Zhang, W., Yan, B., Zhang, N., Huang, J., Zhao, J., Zhang, H., Chen, W., & Fan, D. (2023). Computational study on radio frequency thawing of irregularly shaped aquatic product: Using hairtail fish as an example. Journal of Food Engineering, 354, 111564. https://doi.org/10.1016/j.jfoodeng.2023.111564

Jiao, Y., Tang, J., Wang, Y., & Koral, T. L. (2018). Radio-frequency applications for food processing and safety. Annual Review of Food Science and Technology, 25(9), 105-127. https://doi.org/10.1146/annurev-food-041715-033038

Jiao, Q., Lin, B., Mao, Y., Jiang, H., Guan, X., Li, R., & Wang, S. (2022). Effects of combined radio frequency heating with oven baking on product quality of sweet potato. Food Control, 139, 109097. https://doi.org/10.1016/j.foodcont.2022.109097

Kanafusa, S., Takahashi, C., & Uemura, K. (2018). The effect of radio-frequency heating on vacuum-packed saury (Cololabis saira) in water. Bioscience, Biotechnology, and Biochemistry, 82(9), 1576-1583. https://doi.org/10.1080/09168451.2018.1478713

Karmakar, N. C., Amin, E. M., & Saha, J. K. (2016). Chipless RFID reader architecture. In N. C. Karmakar, E. Md Amin & J. Kumar Saha (Eds.), Chipless RFID sensors (pp. 217-224). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119078104.ch10

Koutchma, T. (2022). Microwave and radio frequency heating in food and beverages. Academic Press.

Laycock, L., Piyasena, P., & Mittal, G. S. (2003). Radio frequency cooking of ground comminuted and muscle meat products. Meat Science, 65(3), 959-965. https://doi.org/10.1016/S0309-1740(02)00311-X

Li, Y., Jiao, Y., & Wang, Y. (2016). Radio frequency (RF) thawing of irregular-shaped frozen beef- A computational study. COMSOL Conference, Shanghai.

Liu, S., Ozturk, S., Xu, J., Kong, F., Gray, P., Zhu, M. J., Sablani, S. S., & Tang, J. (2018). Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. Journal of Food Engineering, 217, 68-74. https://doi.org/10.1016/j.jfoodeng.2017.08.013

Liu, L., Guan, X., Jiao, Q., Xu, J., Li, R., Erdogdu, F., & Wang, S. (2024). Developing combined radio frequency with water bath treatments to improve gel properties of minced chicken breast. Food and Bioprocess Technology, 17, 138-153. https://doi.org/10.1007/s11947-023-03127-9

Llave, Y., & Erdogdu, F. (2022). Radio frequency processing and recent advances on thawing and tempering of frozen food products. Critical Reviews in Food Science and Nutrition, 62(3), 598-618. https://doi.org/10.1080/10408398.2020.1823815

Manzocco, L., Alongi, M., Cortella, G., & Anese, M. (2022). Optimizing radiofrequency-assisted cryogenic freezing to improve meat microstructure and quality. Journal of Food Engineering, 335, 111184. https://doi.org/10.1016/j.jfoodeng.2022.111184

Marra, F., Zhang, L., & Lyng, J. G. (2009). Radio frequency treatment of foods: Review of recent advances. Journal of Food Engineering, 91(4), 497-508. https://doi.org/10.1016/j.jfoodeng.2008.10.015

Muñoz, I., Serra, X., Guàrdia, M. D., Fartdinov, D., Arnau, J., Picouet, P. A., & Gou, P. (2020). Radio frequency cooking of pork hams followed with conventional steam cooking. LWT, 123, 109104. https://doi.org/10.1016/j.lwt.2020.109104

Nagaraj, G., Purohit, A., Harrison, M., Singh, R., Hung, Y., & Mohan, A. (2016). Radiofrequency pasteurization of inoculated ground beef homogenate. Food Control, 59, 59-67. https://doi.org/10.1016/j.foodcont.2015.04.020

Obileke, K. C., Onyeaka, H., Miri, T., Nwabor, O. F., Hart, A., Al-Sharify, Z. T., Al-Najjar, S., & Anumudu, C. (2022). Recent advances in radio frequency, pulsed light, and cold plasma technologies for food safety. Journal of Food Process Engineering, 45(10), e14138. https://doi.org/10.1111/jfpe.14138

Ravishankar, C. N. (2019). Advances in processing and packaging of fish and fishery products. Advanced Agricultural Research & Technology Journal, 3(2), 168-181.

Saka, I., Topcam, H., Son, E., Ozkaya, B., & Erdogdu, F. (2021). Effect of radio frequency processing on physical, chemical, rheological, and bread-baking properties of white and whole wheat flour. LWT, 147, 111563. https://doi.org/10.1016/j.lwt.2021.111563

Singh, R. K., & Deshpande, D. (2019). Functional properties of marinated chicken breast meat during heating in a pilot-scale radio-frequency oven. International Journal of Food Properties, 22(1), 1985-1997. https://doi.org/10.1080/10942912.2019.1698604

Ştefănoiu, G.-A., Tănase, E. E., Miteluţ, A. C., & Popa, M. E. (2016). Unconventional treatments of food: Microwave vs. radiofrequency. Agriculture and Agricultural Science Procedia, 10, 503-510. https://doi.org/10.1016/j.aaspro.2016.09.024

Sun, Y., Jia, Y., Song, M., Liu, Y., Xin, L., Chen, X., Fu, H., Wang, Y., & Wang, Y. (2023). Effects of radio frequency thawing on the quality characteristics of frozen mutton. Food and Bioproducts Processing, 139, 24-33. https://doi.org/10.1016/j.fbp.2023.02.007

Uemura, K., Takahashi, C., & Kobayashi, I. (2010). Inactivation of Bacillus subtilis spores in soybean milk by radio-frequency flash heating. Journal of Food Engineering, 100(4), 622-626. https://doi.org/10.1016/j.jfoodeng.2010.05.010

Vena, A., Perret, E., & Tedjini, S. (2016). Chipless RFID based on RF encoding particle: Realization, coding and reading system. Elsevier. https://doi.org/10.1016/C2015-0-01228-X

Wang, K., Huang, L., Xu, Y., Cui, B., Sun, Y., Ran, C., Fu, H., Chen, X., Wang, Y., & Wang, Y. (2022a). Evaluation of pilot-scale radio frequency heating uniformity for beef sausage pasteurization process. Foods, 11(9), 1317. https://doi.org/10.3390/foods11091317

Wang, K., Ran, C., Cui, B., Sun, Y., Fu, H., Chen, X., Wang, Y., & Wang, Y. (2022b). Sterilizing ready-to-eat poached spicy pork slices using a new device: Combined radio frequency energy and superheated water. Foods, 11(18), 2841. https://doi.org/10.3390/foods11182841

Wang, K., Cui, B., Mao, C., Sun, Y., Ran, C., Ye, P., Jia, Y., Liu, T., Chen, X., & Wang, Y. (2024). Developing a novel protocol for ready-to-eat beef sausage using superheated water (SW)-assisted radio frequency (RF) heating. LWT, 191, 115622. https://doi.org/10.1016/j.lwt.2023.115622

Wei, X., Lau, S. K., Stratton, J., Irmak, S., & Subbiah, J. (2019). Radiofrequency pasteurization process for inactivation of Salmonella spp. and Enterococcus faecium NRRL B-2354 on ground black pepper. Food Microbiology, 82, 388-397. https://doi.org/10.1016/j.fm.2019.03.007

Xu, J., Tang, J., Jin, Y., Song, J., Yang, R., Sablani, S. S., & Zhu, M. J. (2019). High temperature water activity as a key factor influencing survival of Salmonella Enteritidis PT30 in thermal processing. Food Control, 98, 520-528. https://doi.org/10.1016/j.foodcont.2018.11.054

Yang, H., Chen, Q., Cao, H., Fan, D., Huang, J., Zhao, J., Yan, B., Zhou, W., Zhang, W., & Zhang, H. (2019). Radiofrequency thawing of frozen minced fish based on the dielectric response mechanism. Innovative Food Science and Emerging Technologies, 52, 80-88. https://doi.org/10.1016/j.ifset.2018.10.013

Yao, Y., Zhang, B., Zhou, L., Wang, Y., Fu, H., Chen, X., & Wang, Y. (2022). Steam-assisted radio frequency blanching to improve heating uniformity and quality characteristics of stem lettuce cuboids. Food and Bioprocess Technology, 15(8), 1907-1917. https://doi.org/10.1007/s11947-022-02856-7

Yazar, G., & İçier, F. (2013). Radyo frekans ısıtma yöntemi ve gıda işlemede kullanımı. Akademik Gıda, 11(2), 80-93. (In Turkish)

Yiying, Z., Yuanlong, R., Fei, L., Jing, S., & Song, L. (2019). Research on meat food traceability system based on RFID technology. IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC 2019). Chengdu.

Zhang, H., Zhao, Y., Gong, C., & Jiao, S. (2020). Effect of radio frequency heating stress on sublethal injury of Salmonella typhimurium in red pepper powder. LWT - Food Science and Technology, 117, 108700. https://doi.org/10.1016/j.lwt.2019.108700

Zhang, Y., Xie, Y., Tang, J., Wang, S., Wang, L., Zhu, G., Li, X., & Liu, Y. (2020). Thermal inactivation of Cronobacter sakazakii ATCC 29544 in powdered infant formula milk using thermostatic radio frequency. Food Control, 114, 107270. https://doi.org/10.1016/j.foodcont.2020.107270

Zhang, L., Lan, R., Zhang, B., Erdogdu, F., & Wang, S. (2021). A comprehensive review on recent developments of radio frequency treatment for pasteurizing agricultural products. Critical Reviews in Food Science and Nutrition, 61(3), 380-394. https://doi.org/10.1080/10408398.2020.1733929

Zhang, Y., Li, S., Jin, S., Li, F., Tang, J., & Jiao, Y. (2021). Radio frequency tempering multiple layers of frozen tilapia fillets: The temperature distribution, energy consumption, and quality. Innovative Food Science and Emerging Technologies, 68, 102603. https://doi.org/10.1016/j.ifset.2021.102603

Zhang, Y., Pandiselvam, R., Zhu, H., Su, D., Wang, H., Ai, Z., Kothakota, A., Khaneghah, A. M., & Liu, Y. (2022). Impact of radio frequency treatment on textural properties of food products: An updated review. Trends in Food Science & Technology, 124, 154-166. Elsevier Ltd. https://doi.org/10.1016/j.tifs.2022.04.014

Zhao, L., Zhang, M., Bhandari, B., & Bai, B. (2020). Microbial and quality improvement of boiled gansi dish using carbon dots combined with radio frequency treatment. International Journal of Food Microbiology, 334, 108835. https://doi.org/10.1016/j.ijfoodmicro.2020.108835

Downloads

Published

30-12-2024

Issue

Section

Review Articles