Theoretical Investigation of Mechanical and Electronic Properties of Hexagonal BaB2

Authors

DOI:

https://doi.org/10.61326/jaasci.v3i1.100

Keywords:

Ab initio calculations, Elastic properties, Electronic structure, Superconductors

Abstract

A comprehensive investigation of the electronic and mechanical properties in the hexagonal BaB2 binary system using state of the art first-principles computational techniques is critical for an in-depth understanding of the fundamental properties unique to this binary system. In this context, we derived elastic constants using the metric-tensor formulation, which allowed us to find important mechanical properties such as Bulk Modulus, Shear Modulus, and Vickers's hardness which are fundamental mechanical quantities. Also, this research includes a detailed analysis of the electronic band structures and a study comparison of Fermi surface topologies. The charge density at the Fermi level (N(EF)), which is very important in superconductivity theories, was found to be 1.43 states/eV.uc. Furthermore, we have explored whether there exists a close relationship between these properties and the superconducting behavior of the BaB2 material. Nevertheless, our calculations unequivocally demonstrate that the information derived from electronic band structures and Fermi surfaces alone is insufficient for a comprehensive explanation of the superconductivity phenomenon observed in such materials.



References

Alarco, J. A., Talbot, P. C., & Mackinnon, I. D. R. (2015). Phonon anomalies predict superconducting T c for AlB2 -type structures. Physical Chemistry Chemical Physics, 17(38), 25090-25099. https://doi.org/10.1039/c5cp04402b

Boeri, L., & Bachelet, G. B. (2019). Viewpoint: The road to room-temperature conventional superconductivity. Journal of Physics: Condensed Matter, 31(23), 234002. https://doi.org/10.1088/1361-648X/ab0db2

Born, M., Huang, K., & Lax, M. (1955). Dynamical theory of crystal lattices. American Journal of Physics, 23(7), 474. https://doi.org/10.1119/1.1934059

Chen, X. Q., Niu, H., Li, D., & Li, Y. (2011). Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19(9), 1275-1281. https://doi.org/10.1016/j.intermet.2011.03.026

Choi, H. J., Louie, S. G., & Cohen, M. L. (2009). Prediction of superconducting properties of CaB2 using anisotropic Eliashberg theory. Physical Review B, 80(6), 064503. https://doi.org/10.1103/PhysRevB.80.064503

De Jong, M., Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst, A., Sluiter, M., Ande, C. K., van der Zwaag, S., Plata, J. J., Toher, C., Curtarolo, S., Ceder, G., Persson, K. A., & Asta, M. (2015). Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data, 2, 150009. https://doi.org/10.1038/sdata.2015.9

Gaillac, R., Pullumbi, P., & Coudert, F. X. (2016). ELATE: An open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28(27), 275201. https://doi.org/10.1088/0953-8984/28/27/275201

Gonze, X., Amadon, B., Antonius, G., Arnardi, F., Baguet, L., Beuken, J. M., … & Zwanziger, J. W. (2020). The ABINIT project: Impact, environment and recent developments. Computer Physics Communications, 248, 107042. https://doi.org/10.1016/j.cpc.2019.107042

Hamann, D. R., Wu, X., Rabe, K. M., & Vanderbilt, D. (2005). Metric tensor formulation of strain in density-functional perturbation theory. Physical Review B, 71(3), 035117. https://doi.org/10.1103/PhysRevB.71.035117

Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349. https://doi.org/10.1088/0370-1298/65/5/307

Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., & Akimitsu, J. (2001). Superconductivity at 39 K in magnesium diboride. Nature, 410, 63-64. https://doi.org/10.1038/35065039

Parlak, C. (2020). The physical properties of AlB2-type structures CaGa2 and BaGa2: An ab-initio study. Physica B: Condensed Matter, 576, 411724. https://doi.org/10.1016/j.physb.2019.411724

Parlak, C. (2021). First-principles study of the electronic structure and elastic properties of SrGa2 under pressure. Materials Today Communications, 28, 102510. https://doi.org/10.1016/j.mtcomm.2021.102510

Tian, Y., Xu, B., & Zhao, Z. (2012). Microscopic theory of hardness and design of novel superhard crystals. International Journal of Refractory Metals and Hard Materials, 33, 93-106. https://doi.org/10.1016/j.ijrmhm.2012.02.021

Xu, S., Bao, C., Guo, P. J., Wang, Y. Y., Yu, Q. H., Sun, L. L., Su, Y., Liu, K., Lu, Z. Y., Zhou, S., & Xia, T. L. (2020). Interlayer quantum transport in Dirac semimetal BaGa2. Nature Communications, 11, 2370. https://doi.org/10.1038/s41467-020-15854-0

Downloads

Published

06-05-2024

Issue

Section

Research Articles