Investigation of Optical and Structural Properties of VO2 Thin Films by Thermal Treatment

Authors

DOI:

https://doi.org/10.61326/jaasci.v2i2.101

Keywords:

MIT Transition, PLD, Thermal Treatment, Thin Film, VO2

Abstract

In this study, VO2 thin films were grown on SiO2 substrate using the PLD method. Then the grown VO2 thin films were subjected to heat treatments at different temperatures and times in the atmosphere environment. The structural properties of the heat-treated films were investigated using X-ray diffraction (XRD) technique and Raman spectroscopy techniques. The surface microstructures of these films were investigated by Scanning Electron Microscope (SEM) technique, and their optical properties and bond structures were investigated by Photoluminescence (PL) spectra and Fourier Transform Infrared Spectroscopy (FTIR) measurements, respectively. Especially XRD and Raman results revealed that heat treatments with high temperature values transformed the films into VO2 and V2O5 mixed-phase crystal structures. Due to the heat treatment carried out in the atmosphere and the high oxygen affinity of the vanadium metal, crystallization took place in both VO2 and V2O5 forms. In order to obtain homogeneous crystalline VO2 structures, heat treatments should be carried out for a long time in oxygen-limited environments.

References

Chen, C., Zhao, Y., Pan, X., Kuryatkov, V., Bernussi, A., Holtz, M., & Fan, Z. (2011). Influence of defects on structural and electrical properties of VO2 thin films. Journal of Applied Physics, 110(2), 023707. https://doi.org/10.1063/1.3609084

Fu, G., Polity, A., Volbers, N., & Meyer, B. K. (2006). Annealing effects on VO2 thin films deposited by reactive sputtering. Thin Solid Films, 515(4), 2519-2522. https://doi.org/10.1016/j.tsf.2006.04.025

Guo, X., Tan, Y., Hu, Y., Zafar, Z., Liu, J., & Zou, J. (2021a). High quality VO2 thin films synthesized from V2O5 powder for sensitive near-infrared detection. Scientific Reports, 11(1), 21749. https://doi.org/10.1038/s41598-021-01025-8

Guo, X., Tan, Y., Hu, Y., Zafar, Z., Liu, J., & Zou, J. (2021b). High quality VO2 thin films synthesized from V2O5 powder for sensitive near-infrared detection. Scientific Reports, 11(1), 21749. https://doi.org/10.1038/s41598-021-01025-8

Hou, L., Lu, S. W., & Gan, F. (1991). Variation of optical properties of gel-derived VO 2 thin films with temperature. International Conference on Thin Film Physics and Applications. Shanghai.

Hu, P., Hu, P., Vu, T. D., Li, M., Wang, S., Ke, Y., Zeng, X., Mai, L., & Long, Y. (2023). Vanadium oxide: Phase diagrams, structures, synthesis, and applications. Chemical Reviews, 123(8), 4353-4415. https://doi.org/10.1021/acs.chemrev.2c00546

Huang, Z., Chen, S., Lv, C., Huang, Y., & Lai, J. (2012). Infrared characteristics of VO 2 thin films for smart window and laser protection applications. Applied Physics Letters, 101(19), 191905. https://doi.org/10.1063/1.4766287

Ji, H., Liu, D., Cheng, H., Zhang, C., Yang, L., & Ren, D. (2017). Infrared thermochromic properties of monoclinic VO 2 nanopowders using a malic acid-assisted hydrothermal method for adaptive camouflage. RSC Advances, 7(9), 5189-5194. https://doi.org/10.1039/C6RA26731A

Joshi, S., Smieszek, N., & Chakrapani, V. (2020). Effects of charge fluctuation and charge regulation on the phase transitions in stoichiometric VO2. Scientific Reports, 10(1), 17121. https://doi.org/10.1038/s41598-020-73447-9

Ke, Y., Wang, S., Liu, G., Li, M., White, T. J., & Long, Y. (2018). Vanadium dioxide: The multistimuli responsive material and its applications. Small, 14(39), 1802025. https://doi.org/10.1002/smll.201802025

Ke, Y., Yin, Y., Zhang, Q., Tan, Y., Hu, P., Wang, S., Tang, Y., Zhou, Y., Wen, X., Wu, S., White, T. J., Yin, J., Peng, J., Xiong, Q., Zhao, D., & Long, Y. (2019). Adaptive thermochromic windows from active plasmonic elastomers. Joule, 3(3), 858-871. https://doi.org/10.1016/j.joule.2018.12.024

Kim, D., Kwon, S., Park, Y., Boo, J.-H., Nam, S.-H., Joo, Y. T., Kim, M., & Lee, J. (2016). Influence of heat treatment conditions on the properties of vanadium oxide thin films for thermochromic applications. Journal of Nanoscience and Nanotechnology, 16(5), 4968-4972. https://doi.org/10.1166/jnn.2016.12172

Koza, J. A., He, Z., Miller, A. S., & Switzer, J. A. (2011). Resistance switching in electrodeposited VO 2 thin films. Chemistry of Materials, 23(18), 4105-4108. https://doi.org/10.1021/cm2019394

Kumi-Barimah, E., Anagnostou, D. E., & Jose, G. (2020a). Phase changeable vanadium dioxide (VO 2) thin films grown from vanadium pentoxide (V 2 O 5) using femtosecond pulsed laser deposition. AIP Advances, 10(6), 065225. https://doi.org/10.1063/5.0010157

Kumi-Barimah, E., Penhale-Jones, R., Salimian, A., Upadhyaya, H., Hasnath, A., & Jose, G. (2020b). Phase evolution, morphological, optical and electrical properties of femtosecond pulsed laser deposited TiO2 thin films. Scientific Reports, 10(1), 10144. https://doi.org/10.1038/s41598-020-67367-x

Li, M., Magdassi, S., Gao, Y., & Long, Y. (2017). Hydrothermal synthesis of VO 2 polymorphs: Advantages, challenges and prospects for the application of energy efficient smart windows. Small, 13(36), 1701147. https://doi.org/10.1002/smll.201701147

Li, M., Cheng, Y., Fang, C., Chen, J., Zhang, X., & Wang, M. (2022). Thermochromic performances and structure controlling of self-assembled novel SiO2@CQDs/VO2(M) powders. Journal of Sol-Gel Science and Technology, 104(1), 116-124. https://doi.org/10.1007/s10971-022-05916-8

Liu, H., Wan, D., Ishaq, A., Chen, L., Guo, B., Shi, S., Luo, H., & Gao, Y. (2016). Sputtering deposition of sandwich-structured V2O5 /metal (V, W)/V2O5 multilayers for the preparation of high-performance thermally sensitive VO 2 thin films with selectivity of VO2 (B) and VO2 (M) polymorph. ACS Applied Materials & Interfaces, 8(12), 7884-7890. https://doi.org/10.1021/acsami.6b00391

Luo, Y. Y., Zhu, L. Q., Zhang, Y. X., Pan, S. S., Xu, S. C., Liu, M., & Li, G. H. (2013). Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering. Journal of Applied Physics, 113(18), 183520. https://doi.org/10.1063/1.4803840

Martinez, J., Dionizio, S., Gutierrez, N., Mosquera, E., Diosa, J. E., Bolaños, G., & Moran, O. (2022). General aspects of the physical behavior of polycrystalline BiFeO3/VO2 bilayers grown on sapphire substrates. Applied Physics A, 128(8), 720. https://doi.org/10.1007/s00339-022-05798-1

Mjejri, I., & Rougier, A. (2020). Color switching in V 3 O 7 ·H 2 O films cycled in Li and Na based electrolytes: novel vanadium oxide based electrochromic materials. Journal of Materials Chemistry C, 8(11), 3631-3638. https://doi.org/10.1039/C9TC06753A

Novodvorsky, O. A., Parshina, L. S., Lotin, A. A., Mikhalevsky, V. A., Khramova, O. D., Cherebylo, E. A., & Panchenko, V. Ya. (2018). Vanadium- and titanium dioxide-based memristors fabricated via pulsed laser deposition. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 12(2), 322-327. https://doi.org/10.1134/S1027451018020313

Prasadam, V. P., Dey, B., Bulou, S., Schenk, T., & Bahlawane, N. (2019). Study of VO2 thin film synthesis by atomic layer deposition. Materials Today Chemistry, 12, 332-342. https://doi.org/10.1016/j.mtchem.2019.03.005

Rajeswaran, B., Pradhan, J. K., Ramakrishna, S. A., & Umarji, A. M. (2023). Annealing enhanced phase transition in VO2 thin films deposited on glass substrates via chemical vapor deposition. Thin Solid Films, 778, 139918. https://doi.org/10.1016/j.tsf.2023.139918

Shvets, P., Dikaya, O., Maksimova, K., & Goikhman, A. (2019). A review of Raman spectroscopy of vanadium oxides. Journal of Raman Spectroscopy, 50(8), 1226-1244. https://doi.org/10.1002/jrs.5616

Zomaya, D., Xu, W. Z., Grohe, B., Mittler, S., & Charpentier, P. A. (2020). Bimodal size distribution of VO 2 nanoparticles in hydrophilic polymer films for temperature-triggered infrared transmission control. ACS Applied Nano Materials, 3(7), 6645-6653. https://doi.org/10.1021/acsanm.0c01072

Downloads

Published

18-12-2023

Issue

Section

Research Articles