Frequency Dependent Negative Dielectric Behavior in Parylene C Based Composite Films

Authors

DOI:

https://doi.org/10.61326/jaasci.v3i1.254

Keywords:

Dielectric, Negative capacitance, Parylene C, Polymer

Abstract

Dielectric materials are an important research topic for many applications today. Polymers are among the prominent dielectrics due to their durability, high ionic conductivity and low dielectric losses. This study investigates the dielectric properties of Parylene C (PAC)-based composite films. Capacitance and dissipation factor values are measured. Dielectric permittivity and losses are calculated. Negative capacitance and negative dielectric constant are observed, and resonant frequency values are compared. Activated carbon doping significantly impacts the resonant frequencies of the films. Doped samples exhibit higher positive and negative resonant frequencies (2.2560 MHz and 2.2593 MHz) compared to undoped counterparts (2.1952 MHz and 2.2015 MHz). Polarization further increases resonant frequencies, alongside dielectric permittivity and dissipation factor with permittivity experiencing a more pronounced increase. Post-polarization, doped samples display resonant frequencies of 2.3727 MHz and 2.3761 MHz, while undoped samples reach 2.3658 MHz and 2.3727 MHz. A comprehensive analysis of impedance, resistance, and reactance values reveals insights into the composite film's behavior. Crucially, throughout the measurements, the composite films display a consistent inductive response at frequencies above their resonance frequencies. Understanding the mechanisms behind this inductive response could open up new possibilities for the use of these films in advanced electronic devices and circuits.

References

Axelrod, E., Puzenko, A., Haruvy, Y., Reisfeld, R., & Yuri Feldman Y. (2006). Negative dielectric loss phenomenon in porous sol–gel glasses. Journal of Non-Crystalline Solids, 352(40-41), 4166-4173. https://doi.org/10.1016/j.jnoncrysol.2006.07.008

Balu, S. K., Shanker, N. P., Manikandan, M., Aparnadevi, N., Mulikraj, T., Manimuthu, P., & Venkateswaran, C. (2020). Crossover to negative dielectric constant in perovskite PrMnO3. Physica Status Solidi A-Applications and Materials Science, 217(17), 2000230. https://doi.org/10.1002/pssa.202000230

Chun, W., Chou, N., Cho, S., Yang, S., & Kim, S. (2014). Evaluation of sub-micrometer parylene C films as an insulation layer using electrochemical impedance spectroscopy. Progress in Organic Coatings, 77(2), 537-547. https://doi.org/10.1016/j.porgcoat.2013.11.020

Cui, W., Cheng, N., Liu, Q., Ge, C., Asiri, A. M., & Sun, X. (2014). Mo2C nanoparticles decorated graphitic carbon sheets: Biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. Acs Catalysis, 4(8), 2658-2661. https://doi.org/10.1021/cs5005294

Dong, J., Li, L., Qiu, P., Pan, Y., Niu, Y., Sun, L., Pan, Z., Liu, Y., Tan, L., Xu, X., Luo, G., & Wang, H. (2023). Scalable polyimide‐organosilicate hybrid films for high‐temperature capacitive energy storage. Advanced Materials, 35(20), 2211487. https://doi.org/10.1002/adma.202211487

El-Nahass, M. M., Attia, A. A., Salem, G. F., Ali, H. A. M., & Ismail, M. I. (2014). Dielectric and impedance spectral characteristics of bulk ZnIn2Se4. Physica B: Condensed Matter, 434, 89-94. https://doi.org/10.1016/j.physb.2013.10.049

Florkowski, M., Kuniewski, M., & Mikrut P. (2024). Effect of voltage harmonics on dielectric losses and dissipation factor interpretation in high-voltage insulating materials. Electric Power Systems Research, 226, 109973. https://doi.org/10.1016/j.epsr.2023.109973

Hoffmann, M., Fengler, F. G. P., Herzig, M., Mittmann, T. M. B., Schroeder, U., Negrea, R. L. P., Slesazeck, S., & Mikolajick, T. (2019). Unveiling the double-well energy landscape in a ferroelectric layer. Nature, 565, 464-467. https://doi.org/10.1038/s41586-018-0854-z

Hu, Z., Liu, X., Ren, T., Saeed, H. A. M, Wang, Q., Cui, X., Huai, K., Huang, S., Xia, Y., Fu, K., Zhang, J., & Chen, Y. (2022). Research progress of low dielectric constant polymer materials. Journal of Polymer Engineering, 42(8), 677-687. https://doi.org/10.1515/polyeng-2021-0338

Íñiguez, J., Zubko, P., Luk’yanchuk, I., & Cano, A. (2019). Ferroelectric negative capacitance. Nature Reviews Materials, 4, 243-256. https://doi.org/10.1038/s41578-019-0089-0

Jiang, W., Hardy, D. J., Phillips, J. C., MacKerell, A. D., Schulten, K., & Roux, B. (2010). High-performance scalable molecular dynamics simulations of a polarizable force field based on classical drude oscillators in namd. The Journal of Physical Chemistry Letters, 2(2), 87-92. https://doi.org/10.1021/jz101461d

Jones, B. K., Santana, J., & McPherson, M. (1998). Negative capacitance effects in semiconductor diodes. Solid State Communications, 107(2), 47-50. https://doi.org/10.1016/S0038-1098(98)00162-8

Kahouli, A., Sylvestre, A., Ortega, L., Jomni, F., Yangui, B., Maillard, M., Berge, B., Robert, J. C., & Legrand J. (2009). Structural and dielectric study of parylene C thin films. Applied Physics Letters, 94(15), 152901. https://doi.org/10.1063/1.3114404

Khan, A. I., Chatterjee, K., Wang, B., Drapcho, S., You, L., Serrao, C., Bakaul, S. R., Ramesh, R., & Salahuddin, S. (2015). Negative capacitance in a ferroelectric capacitor. Nature Materials, 14(2), 182-186. https://doi.org/10.1038/nmat4148

Kim, S., & Cho, S. (2012). Parylene-C-coated indium tin oxide electrodes for the optical-and electrical-impedance characterization of cells. Journal of Nanoscience and Nanotechnology, 12(7), 5830-5834. https://doi.org/10.1166/jnn.2012.6363

Kozai, T. D. Y., Langhals, N. B., Patel, P. R., Deng, X., Zhang, H., Smith, K., Lahann, J., Kotov, N. A., & Kipke, D. R. (2012). Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nature Materials, 11(12), 1065-1073. https://doi.org/10.1038/nmat3468

Kurnaz, S., Ozturk, O., Hazar, M. A., Guduloglu, U., Yilmaz, N., & Cicek, O. (2023). Flexible capacitive and piezoresistive pressure sensors based on screen-printed parylene C/polyurethane composites in low-pressure range. Flexible and Printed Electronics, 8(3), 035015. https://doi.org/10.1088/2058-8585/acf774

Leng, Z., Wu, H., Tang, X., Li, Y., Xin, Y., Xie, P., Li, G., Yan, K., & Liu, C. (2020). Carbon nanotube/epoxy composites with low percolation threshold and negative dielectric constant. Journal of Materials Science: Materials in Electronics, 33, 26015-26024. https://doi.org/10.1007/s10854-022-09291-6

Li, H., Ai, D., Ren, L., Yao, B., Han, Z., Shen, Z., Wang, J., Chen, L., & Wang, Q. (2019). Scalable polymer nanocomposites with record high‐temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Advanced Materials, 31(23), 1900875. https://doi.org/10.1002/adma.201900875

Liu, Y., Xu, C., Ren, H., Wei, Z., & Zhang, Z. (2020). Tailorable negative permittivity in Fe/BaTiO3 meta-composites. Functional Materials Letters, 13(03), 2050017. https://doi.org/10.1142/S1793604720500174

Mokni, M., Maggioni, G., Kahouli, A., Carturan, S. M., Raniero, W., & Sylvestre, A. (2019). Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices. Beilstein Journal of Nanotechnology, 10, 428-441. https://doi.org/10.3762/bjnano.10.42

Oughstun, K. E., & Cartwright, N. A. (2003). On the lorentz-lorenz formula and the lorentz model of dielectric dispersion. Optics Express, 11(13), 1541-1546. https://doi.org/10.1364/oe.11.001541

Qu, Y., Du, Y., Fan, G., Xin, J., Liu, Y., Xie, P., You, S., Zhang, Z., Sun, K., & Fan, R. (2019). Low-temperature sintering Graphene/CaCu3Ti4O12 nanocomposites with tunable negative permittivity. Journal of Alloys and Compounds, 771, 699-710. https://doi.org/10.1016/j.jallcom.2018.09.049

Raja, V., Sharma, A. K., & Rao, V. V. R. N. (2004). Impedance spectroscopic and dielectric analysis of PMMA-CO-P4VPNO polymer films. Materials Letters, 58(26), 3242-3247. https://doi.org/10.1016/j.matlet.2004.05.061

Romano, S., Cabrini, S., Rendina, I., & Mocella, V. (2014). Guided resonance in negative index photonic crystals: A new approach. Light: Science &Amp; Applications, 3(1), e120. https://doi.org/10.1038/lsa.2014.1

Sankar, S., Kanagathara, N., & Robinson Azariah, J. C. (2022). Electric modulus, dielectric relaxation mechanism and impedance properties of melaminum perchlorate monohydrate - broadband dielectric spectroscopic study. Acta Physica Polonica A, 141(5), 500-506. https://doi.org/10.12693/APhysPolA.141.500

Shamrao, P. V., Vithya, K., Premalatha, M., & Sundaresan, B. (2019). AC impedance study of PMMA‐LiNO3 electrolyte. In Macromolecular Symposia, 387(1), 1800187. https://doi.org/10.1002/masy.201800187

Sun, K., Dong, J., Wang, Z., Wang, Z., Fan, G., Hou, Q., An, L., Dong, M., Fan, R., & Guo, Z. (2019). Tunable negative permittivity in flexible graphene/PDMS metacomposites. The Journal of Physical Chemistry, 123(38), 23635-23642. https://doi.org/10.1021/acs.jpcc.9b06753

Vandeparre, H., Watson, D., & Lacour, S. P. (2013). Extremely robust and conformable capacitive pressure sensors based on flexible polyurethane foams and stretchable metallization. Applied Physics Letters, 103(20), 204103. https://doi.org/10.1063/1.4832416

Wang, D., Li, H., Li, M., Jiang, H., Xia, M., & Zhou, Z. (2013). Stretchable conductive polyurethane elastomer in situ polymerized with multi-walled carbon nanotubes. Journal of Materials Chemistry C, 1(15), 2744-2749. https://doi.org/10.1039/C3TC30126E

Wang, T., Liu, S., Li, X., Wang, Q., Liu, S., Liang, X., Li, S., Liu, B., Liu, J., & Zhang, G. (2022). Wide bandgap nanocoatings for polymer dielectric with outstanding electrical strength. Advanced Materials Interfaces, 9(35), 2201824. https://doi.org/10.1002/admi.202201824

Wang, Z., Li, H., Hu, H., Fan, Y., Fan, R., Li, B., Zhang, J., Liu, H., Fan, J., Hou, H., Dang, F., Kou, Z., & Guo Z. (2020). Direct observation of stable negative capacitance in SrTiO3@ BaTiO3 heterostructure. Advanced Electronic Materials, 6(2), 1901005. https://doi.org/10.1002/aelm.201901005

Wong, J. C., & Salahuddin S. (2018). Negative capacitance transistors. Proceedings of the IEEE, 107(1), 49-62. https://doi.org/10.1109/JPROC.2018.2884518

Xie, P., Shi, Z., Feng, M., Sun, K., Liu, Y., Yan, K., Liu, C., Moussa, T. A. A., Huang, M., Meng, S., Liang, G., Hou, H., Fan, R., & Guo, Z. (2022). Recent advantages in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Advanced Composites and Hybrid Materials, 5, 679-695. https://doi.org/10.1007/s42114-022-00479-2

Xu, J., Zhu, L., Fang, D., Liu, L., Wang, L., & Xu, W. (2013). Prediction of dielectric dissipation factors of polymers from cyclic dimer structure using multiple linear regression and support vector machine. Colloid and Polymer Science, 291, 551-561. https://doi.org/10.1007/s00396-012-2743-6

Yan, H., Zhao, C., Wang, K., Deng, L., Ma, M., & Xua, G. (2013). Negative dielectric constant manifested by static electricity. Applied Physics Letters, 102, 062904. https://doi.org/10.1063/1.4792064

Yang, P., Sun, K., Wu, Y., Wu, H., Yang, X., Wu, X., Du, H., & Fan, R. (2022). Negative permittivity behaviors derived from dielectric resonance and plasma oscillation in percolative bismuth ferrite/silver composites. The Journal of Physical Chemistry C, 126(30), 12889-12896. https://doi.org/10.1021/acs.jpcc.2c03543

Yu, X., Yi, B., Liu, F., & Wang, X. (2008). Prediction of the dielectric dissipation factor tanδ of polymers with an ANN model based on the DFT calculation. Reactive & Functional Polymers, 68(2008), 1557-1562. https://doi.org/10.1016/j.reactfunctpolym.2008.08.009

Downloads

Published

22-06-2024

Issue

Section

Research Articles