Characterization of 3-Chloro-4-Fluoronitrobenzene Molecule with New Calculation Methods and Discussions for Advanced Applied Sciences
DOI:
https://doi.org/10.61326/jaasci.v3i2.311Keywords:
Comparison, DFT, HF, ICT Regions, SimulationsAbstract
This current research characterizes 2-chloro-1-fluoro-4-nitrobenzene molecule via the Hartree Fock (HF) and density functional theory (DFT) quantum mechanical computational techniques using B3LYP/6-311++G(d,p) levels of computation. The molecular geometries, thermodynamic quantities at 300 K, NMR chemical shifts, corresponding vibrational spectra, UV-vis spectra, vibrational frequencies, and atomic point charge distributions are extensively investigated. The 1H and 13C NMR chemical shifts, and theoretical vibrational frequencies are compared to the experimental results. It is obtained that all calculations are in agreement with the available experimental data which has the 1H isotropic chemical shifts range from 8.306 ppm to 7.235 ppm, while the computed values range from 9.0368 ppm to 6.8397 ppm, 8.3213 ppm to 6.1242 ppm at DFT and HF GIAO levels, respectively. Besides, calculated 13C chemical shifts vary from 141.83 ppm to 186.394 ppm and from 129.743 ppm to 174.373 ppm by using DFT and HF in CH4, while these values are in the range of 117.00 ppm to 164.59 ppm, experimentally. This points out that the chosen computation sets are highly effective methods for identifying and characterizing the compound. In addition, simulations are performed to examine frontier molecular orbitals, electrostatic potential, and molecular electrostatic potential regions. Key properties such as dipole moment, chemical hardness, transition states, electronegativity, molecular softness, nucleophilic aromatic regions, electrophilicity index, and energy band gap are also analyzed to explore potential future applications such as advanced applied sciences, industry, chemistry, medical, physics, biology, pharmaceuticals, dyes, and agrochemicals of the compound. Additionally, it is noted that the compound contains significant intramolecular charge transfer (ICT) regions, lone electron pairs, electron-donating groups, π-bond conjugation, and particularly reactive electrophilic and nucleophilic aromatic sites. Accordingly, it is pointed out that the molecule has a strong potential for metallic bonding as well as various intermolecular interactions. In summary, this study provides valuable information that will benefit both basic research and technological or industrial applications by increasing the understanding of physical, chemical, structural, and reactive features of the 3-chloro-4-fluoronitrobenzene molecule.
References
Altunpak, Y., Yaşar, M., & Önal, M., (2019). Electrical sliding wear behaviour of an aged high conductivity cu-be alloy. IOSR Journal of Engineering, 09(11), 53-60.
Avci, D., & Atalay, Y. (2009). Theoretical analysis of vibrational spectra and scaling‐factor of 2‐aryl‐1, 3, 4‐oxadiazole derivatives. International Journal of Quantum Chemistry, 109(2), 328-341. https://doi.org/10.1002/qua.21789
Baraistka, H., Labudzinska, A., & Terpinski, J. (1987). Laser Raman spectroscopy: Analytical applications (Series: Ellis Horwood series in analytical chemistry). Ellis Harwood Publishers.
Becke, A. D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of Chemical Physics, 96(3), 2155-2160. https://doi.org/10.1063/1.462066
Buyukuslu, H., Akdogan, M., Yildirim, G., & Parlak, C. (2010). Ab initio Hartree-Fock and density functional theory study on characterization of 3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1H-indole. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(4), 1362-1369. https://doi.org/10.1016/j.saa.2010.01.003
Chen, J., & Wang, H. (2021). Density, viscosity, and saturated vapour pressure of 3-chloro-4-fluoronitrobenzene and 3-chloro-2-fluoronitrobenzene. The Journal of Chemical Thermodynamics, 154, 106337. https://doi.org/10.1016/j.jct.2020.106337
Coates, J. (2006). Interpretation of infrared spectra, a practical approach. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, 12, 10815-10837. https://doi.org/10.1002/9780470027318.a5606
Dennington, R., Keith, T., & Millam, J. (2007). GaussView, Version 4.1.2. Semichem Inc., Shawnee Mission.
Ertem, A. G., & Altunpak, Y. (2019). Effect of electrode materials type on resistance spot welding of AISI 304 austenitic stainless steel (ASS) sheets. International Journal for Research in Applied Science and Engineering Technology, 7(11), 280-284. https://doi.org/10.22214/ijraset.2019.11045
Fogarasi, G., & Pulay, P. (1986). Quantum chemical calculation of force constants and vibrational spectra. Journal of Molecular Structure, 141, 145-152. https://doi.org/10.1016/0022-2860(86)80318-0
Fogarasi, G., Zhou, X., Taylor, P. W., & Pulay, P. (1992). The calculation of ab initio molecular geometries: Efficient optimization by natural internal coordinates and empirical correction by offset forces. Journal of the American Chemical Society, 114(21), 8191-8201. https://doi.org/10.1021/ja00047a032
Foresman, J., & Frish, E. (1996). Exploring chemistry with electronic structure methods. Gaussian Inc.
Fukui, K. (1982). Role of frontier orbitals in chemical reactions. Science, 218, 747-754. https://doi.org/10.1126/science.218.4574.747
Furche, F., & Ahlrichs, R. (2002). Adiabatic time-dependent density functional methods for excited state properties. The Journal of Chemical Physics, 117(16), 7433-7447. https://doi.org/10.1063/1.1508368
Gece, G. (2008). The use of quantum chemical methods in corrosion inhibitor studies. Corrosion Science, 50(11), 2981-2992. https://doi.org/10.1016/j.corsci.2008.08.043
Helgaker, T. U., Jensen, H. J. R. A., & Jørgensen, P. (1986). Analytical calculation of MCSCF dipole‐moment derivatives. The Journal of Chemical Physics, 84(11), 6280-6284. https://doi.org/10.1063/1.450772
Keresztury, G., Holly, S., Besenyei, G., Varga, J., Wang, A., & Durig, J. R. (1993). Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N, N-dimethylthiocarbamate. Spectrochimica Acta Part A: Molecular Spectroscopy, 49(13-14), 2007-2026. https://doi.org/10.1016/S0584-8539(09)91012-1
Kikuchi, M., Nakagawa, M., Tone, S., Saito, H., Niino, T., Nagasawa, N., & Sawai, J. (2016). Predicting changes in aquatic toxicity of chemicals resulting from solvent or dispersant use as vehicle. Chemosphere, 154, 34-39. https://doi.org/10.1016/j.chemosphere.2016.03.030
Kohn, W., Becke, A. D., & Parr, R. G. (1996). Density functional theory of electronic structure. The Journal of Physical Chemistry, 100(31), 12974-12980. https://doi.org/10.1021/jp960669l
Krishnakumar, V., Prabavathi, N., & Muthunatesan, S. (2008). Density functional theory calculations and vibrational spectra of 6-methyl 1, 2, 3, 4-tetrahyroquinoline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(3), 853-859. https://doi.org/10.1016/j.saa.2007.05.034
Lewis, D. F. V., Ioannides, C., & Parke, D. V. (1994). Interaction of a series of nitriles with the alcohol-inducible isoform of P450: Computer analysis of structure—activity relationships. Xenobiotica, 24(5), 401-408. https://doi.org/10.3109/00498259409043243
Morikawa, A., Furukawa, T. A., & Moriyama, Y. (2005). Synthesis and characterization of novel aromatic polyimides from bis (4-amino-2-biphenyl) ether and aromatic tetracarboxylic dianhydrides. Polymer Journal, 37(10), 759-766. https://doi.org/10.1295/polymj.37.759
Olsen, J., & Jørgensen, P. (1985). Linear and nonlinear response functions for an exact state and for an MCSCF state. The Journal of Chemical Physics, 82(7), 3235-3264. https://doi.org/10.1063/1.448223
Polavarapu, P. L. (1990). Ab initio vibrational Raman and Raman optical activity spectra. Journal of Physical Chemistry, 94(21), 8106-8112. https://doi.org/10.1021/j100384a024
Politzer, P., & Abu-Awwad, F. (1998). A comparative analysis of Hartree-Fock and Kohn-Sham orbital energies. Theoretical Chemistry Accounts, 99, 83-87. https://doi.org/10.1007/s002140050307
Politzer, P., & Murray, J. S. (2002). The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts, 108, 134-142. https://doi.org/10.1007/s00214-002-0363-9
Pulay, P., Fogarasi, G., Pongor, G., Boggs, J. E., & Vargha, A. (1983). Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. Journal of the American Chemical Society, 105(24), 7037-7047. https://doi.org/10.1021/ja00362a005
Rauhut, G., & Pulay, P. (1995). Transferable scaling factors for density functional derived vibrational force fields. The Journal of Physical Chemistry, 99(10), 3093-3100. https://doi.org/10.1021/j100010a019
Ravi, R., Sivaramakrishnan, H., & Nagarajan, K. (1997). Nucleophilic substitutions on 3-chroro-4-fluoronitrobenzene. Indian Journal of Chemistry Section B-Organic Chemistry Including Medicinal Chemistry, 36(4), 347-348.
Rintoul, L., Micallef, A. S., & Bottle, S. E. (2008). The vibrational group frequency of the N–O stretching band of nitroxide stable free radicals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70(4), 713-717. https://doi.org/10.1016/j.saa.2007.08.017
Saiardi, A., Erdjument-Bromage, H., Snowman, A. M., Tempst, P., & Snyder, S. H. (1999). Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Current Biology, 9(22), 1323-1326. https://doi.org/10.1016/S0960-9822(00)80055-X
Schell, M. J., Letcher, A. J., Brearley, C. A., Biber, J., Murer, H., & Irvine, R. F. (1999). PiUS (Pi uptake stimulator) is an inositol hexakisphosphate kinase. FEBS Letters, 461(3), 169-172. https://doi.org/10.1016/S0014-5793(99)01462-3
SDBS. (2024). Spectral database for organic compounds, SDBS. https://sdbs.db.aist.go.jp/
Spencer, J., Rathnam, R. P., Patel, H., & Anjum, N. (2008). Microwave mediated reduction of heterocycle and fluorine containing nitroaromatics with Mo (CO) 6 and DBU. Tetrahedron, 64(44), 10195-10200. https://doi.org/10.1016/j.tet.2008.08.036
Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry, 98(45), 11623-11627. https://doi.org/10.1021/j100096a001
Ulgen, C., Yıldırım, A. B., & Turker, A. U. (2017). Effect of magnetic field treatments on seed germination of melissa officinalis L. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 43-49. https://doi.org/10.21448/ijsm.356283
Ulgen, C., Yıldırım, A., & Turker, A. (2020). Enhancement of plant regeneration in lemon balm (Melissa officinalis L.) with different magnetic field applications. International Journal of Secondary Metabolite, 7(2), 99-108. https://doi.org/10.21448/ijsm.677102
Ulgen, C., Yildirim, A. B., Sahin, G., & Turker, A. U. (2021). Do magnetic field applications affect in vitro regeneration, growth, phenolic profiles, antioxidant potential and defense enzyme activities (SOD, CAT and PAL) in lemon balm (Melissa officinalis L.). Industrial Crops and Products, 169, 113624 https://doi.org/10.1016/j.indcrop.2021.113624
Wang, D. L., Sun, X. P., Shen, H. T., Hou, D. Y., & Zhai, Y. C. (2008). A comparative study of the electrostatic potential of fullerene-like structures of Au32 and Au42. Chemical Physics Letters, 457(4-6), 366-370. https://doi.org/10.1016/j.cplett.2008.04.038
Wilson, E. B., Decius, J. C., & Cross, P. C. (1980). Molecular vibrations: The theory of infrared and Raman vibrational spectra. Courier Corporation.
Wojtkowiak, B., & Chabanel, M. (1977). Spectrochimie moléculaire. Paris: Technique et documentation. (In French)
Wu, Q., & Yang, W. (2002). Empirical correction to density functional theory for van der Waals interactions. The Journal of Chemical Physics, 116(2), 515-524. https://doi.org/10.1063/1.1424928
Zhang, Y., Ma, Z., Yang, M., Chen, Y., Tang, B., & Zhu, T. (2024). Preparation of modified graphyne to detect genotoxic impurities in gefitinib: Effects of ionic liquid structures and carbon nanotube composite modes. Microchemical Journal, 201, 110651. https://doi.org/10.1016/j.microc.2024.110651
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muhammed Oz, Ali Serol Erturk, Umit Erdem

This work is licensed under a Creative Commons Attribution 4.0 International License.