X-Ray Radiation Responses of 4H-SiC MOS with Eu2O3/SiO2 Dual Dielectric
DOI:
https://doi.org/10.61326/jaasci.v3i2.313Keywords:
Eu2O3 , High-k materials, MOS irradiation, SiC substrates, X-ray diffractionAbstract
This study examines the effects of X-ray irradiation on the structural and electrical properties of Eu₂O₃ dielectric thin films deposited on SiC substrates. The films were exposed to varying radiation durations, and their structural changes were analyzed using X-ray diffraction (XRD), while electrical properties were evaluated through capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements. The results revealed that increased radiation exposure led to an increase in crystalline size and lattice strain, attributed to local heating and atomic rearrangements caused by radiation. Electrical analysis showed slight shifts in flat band and mid-gap voltages due to radiation-induced defects, which influenced charge trapping behavior. Despite the observed defects, the dielectric material exhibited stable electrical performance under the tested radiation conditions, indicating its potential for radiation-tolerant electronic devices. These findings highlight the applicability of Eu₂O₃ as a high-k dielectric material for advanced electronic devices operating in radiation-harsh environments.
References
Baydogan, N., Ozdemir, O., & Cimenoglu, H. (2013). The improvement in the electrical properties of nanospherical ZnO: Al thin film exposed to irradiation using a Co-60 radioisotope. Radiation Physics and Chemistry, 89, 20-27. https://doi.org/10.1016/j.radphyschem.2013.02.042
Bera, M. K., & Maiti, C. K. (2007). Charge trapping properties of ultra-thin TiO2 films on strained-Si. Semiconductor Science and Technology, 22(7), 774-783. https://doi.org/10.1088/0268-1242/22/7/017
Doyle, B. L. (2014). Displacement damage caused by gamma-rays and neutrons on Au and Se. Sandia National Laboratories.
Hill, W. A., & Coleman, C. C. (1980). A single-frequency approximation for interface-state density determination. Solid-State Electronics, 23(9), 987-993. https://doi.org/10.1016/0038-1101(80)90064-7
Jiang, N. (2015). Electron beam damage in oxides: A review. Reports on Progress in Physics, 79(1), 016501. https://doi.org/10.1088/0034-4885/79/1/016501
Kahraman, A., & Yilmaz, E. (2018). A comprehensive study on usage of Gd2O3 dielectric in MOS based radiation sensors considering frequency dependent radiation response. Radiation Physics and Chemistry, 152, 36-42. https://doi.org/10.1016/j.radphyschem.2018.07.017
Kaleji, B. K., Sarraf-Mamoory, R., & Fujishima, A. (2012). Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO2 thin films. Materials Chemistry and Physics, 132(1), 210-215. https://doi.org/10.1016/j.matchemphys.2011.11.034
Karadeniz, S., Selcuk, A. B., Tuğluoğlu, N., & Ocak, S. B. (2007). On the interface trap density and series resistance of tin oxide film prepared on n-type Si (1 1 1) substrate: Frequency dependent effects before and after 60Co γ-ray irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259(2), 889-894. https://doi.org/10.1016/j.nimb.2007.02.085
Karataş, Ş., Türüt, A., & Altındal, Ş. (2009). Irradiation effects on the C–V and G/ω–V characteristics of Sn/p-Si (MS) structures. Radiation Physics and Chemistry, 78(2), 130-134. https://doi.org/10.1016/j.radphyschem.2008.09.006
Kaya, S., & Yilmaz, E. (2015). A comprehensive study on the frequency-dependent electrical characteristics of Sm2O3 MOS capacitors. IEEE Transactions on Electron Devices, 62(3), 980-987. https://doi.org/10.1109/TED.2015.2389953
Kaya, Ş., Yılmaz, E., & Çetinkaya, A. (2015a). Influences of irradiation on the C–V and G/ω–V characteristics of Si3N4 MIS capacitors. Journal of Nuclear Sciences, 2(2), 48-52. https://doi.org/10.1501/nuclear_0000000012
Kaya, S., Yilmaz, E., Kahraman, A., & Karacali, H. (2015b). Frequency dependent gamma-ray irradiation response of Sm2O3 MOS capacitors. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 358, 188-193. https://doi.org/10.1016/j.nimb.2015.06.037
Kaya, S., & Yilmaz, E. (2018). Modifications of structural, chemical, and electrical characteristics of Er2O3/Si interface under Co-60 gamma irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 418, 74-79. https://doi.org/10.1016/j.nimb.2018.01.010
Kaya, S., Yıldız, I., Lok, R., & Yılmaz, E. (2018). Co-60 gamma irradiation influences on physical, chemical and electrical characteristics of HfO2/Si thin films. Radiation Physics and Chemistry, 150, 64-70. https://doi.org/10.1016/j.radphyschem.2018.04.023
Kaya, S., Abubakar, S., & Yilmaz, E. (2019). Co-60 gamma irradiation influences on device characteristics of n-SnO2/p-Si heterojunction diodes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 445, 63-68. https://doi.org/10.1016/j.nimb.2019.03.013
Kozlovskiy, A. L., Abyshev, B., Shlimas, D. I., & Zdorovets, M. V. (2022). Study of structural, strength, and thermophysical properties of Li2+4xZr4−xO3 ceramics. Technologies, 10(3), 58. https://doi.org/10.3390/technologies10030058
Laha, P., Dahiwale, S. S., Banerjee, I., Pabi, S. K., Kimd, D., Barhai, P. K., Bhoraskar, V. N., & Mahapatra, S. K. (2011). 6 MeV electron irradiation effects on electrical properties of Al/TiO2/n-Si MOS capacitors. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269(23), 2740-2744. https://doi.org/10.1016/j.nimb.2011.08.024
Laha, P., Banerjee, I., Barhai, P. K., Das, A. K., Bhoraskar, V. N., & Mahapatra, S. K. (2012). Effects of 6 MeV electron irradiation on the electrical properties and device parameters of Al/Al2O3/TiO2/n-Si MOS capacitors. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 283, 9-14. https://doi.org/10.1016/j.nimb.2012.04.014
Li, S., Luo, J., & Ye, T. (2023). Investigation of reducing interface state density in 4H-SiC by increasing oxidation rate. Nanomaterials, 13(9), 1568. https://doi.org/10.3390/nano13091568
Liu, Y., Zhu, Y., Shen, T., Chai, J., Niu, L., Li, S., Jin, P., Zheng, H., & Wang, Z. (2021). Irradiation response of Al2O3-ZrO2 ceramic composite under He ion irradiation. Journal of the European Ceramic Society, 41(4), 2883-2891. https://doi.org/10.1016/j.jeurceramsoc.2020.11.042
Ma, T. P., & Dressendorfer, P. V. (1989). Ionizing radiation effects in MOS devices and circuits. John Willey & Sons.
Manikanthababu, N., Arun, N., Dhanunjaya, M., Saikiran, V., Nageswara Rao, S. V. S., & Pathak, A. P. (2015). Synthesis characterization and radiation damage studies of high-k dielectric (HfO2) films for MOS device applications. Radiation Effects & Defects in Solids, 170(3), 207-217. https://doi.org/10.1080/10420150.2014.980259
Mazzolini, P., Russo, V., Casari, C. S., Hitosugi, T., Nakao, S., Hasegawa, T., & Li Bassi, A. (2016). Vibrational–electrical properties relationship in donor-doped TiO2 by Raman spectroscopy. The Journal of Physical Chemistry C, 120(33), 18878-18886. https://doi.org/10.1021/acs.jpcc.6b05282
Mozia, S. (2008). Effect of calcination temperature on photocatalytic activity of TiO2. Photodecomposition of mono-and polyazo dyes in water. Polish Journal of Chemical Technology, 10(3), 42-49. https://doi.org/10.2478/v10026-008-0035-1
Mozia, S., Morawski, A. W., Toyoda, M., & Inagaki, M. (2009). Application of anatase-phase TiO2 for decomposition of azo dye in a photocatalytic membrane reactor. Desalination, 241(1-3), 97-105. https://doi.org/10.1016/j.desal.2007.12.048
Shi, H. L., Zou, B., Li, Z. A., Luo, M. T., & Wang, W. Z. (2019). Direct observation of oxygen-vacancy formation and structural changes in Bi2WO6 nanoflakes induced by electron irradiation. Beilstein Journal of Nanotechnology, 10(1), 1434-1442. https://doi.org/10.3762/bjnano.10.141
Subramanian, A., & Wang, H. W. (2012). Effect of hydroxyl group attachment on TiO2 films for dye-sensitized solar cells. Applied Surface Science, 258(20), 7833-7838. https://doi.org/10.1016/j.apsusc.2012.04.069
Tracy, C. L., Pray, J. M., Lang, M., Popov, D., Park, C., Trautmann, C., & Ewing, R. C. (2014). Defect accumulation in ThO2 irradiated with swift heavy ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 326, 169-173. https://doi.org/10.1016/j.nimb.2013.08.070
Wilk, G. D., Wallace, R. M., & Anthony, J. (2001). High-κ gate dielectrics: Current status and materials properties considerations. Journal of Applied Physics, 89(10), 5243-5275. https://doi.org/10.1063/1.1361065
Yilmaz, E., Doğan, İ., & Turan, R. (2008). Use of Al2O3 layer as a dielectric in MOS based radiation sensors fabricated on a Si substrate. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(22), 4896-4898. https://doi.org/10.1016/j.nimb.2008.07.028
Zhang, H., Su, R., Szlufarska, I., Shi, L., & Wen, H. (2021). Helium effects and bubbles formation in irradiated Ti3SiC2. Journal of the European Ceramic Society, 41(1), 252-258. https://doi.org/10.1016/j.jeurceramsoc.2020.08.015
Zhou, X. J., Fleetwood, D. M., Felix, J. A., Gusev, E. P., & D'Emic, C. (2005). Bias-temperature instabilities and radiation effects in MOS devices. IEEE Transactions on Nuclear Science, 52(6), 2231-2238. https://doi.org/10.1109/TNS.2005.860667
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Harem Saleh, Şenol Kaya, Yalçın Kalkan, Rıfkı Terzioğlu, Cabir Terzioğlu

This work is licensed under a Creative Commons Attribution 4.0 International License.