The Production of Rice Husk Ash and Blast Furnace Slag-Based Alkali-Activated Composites under High-Temperature Effects

Authors

DOI:

https://doi.org/10.61326/jaasci.v3i2.318

Keywords:

Alkali-activated slag concrete, Blast furnace slag, Fire resistance, Rice husk ash

Abstract

Alkali-activated concretes offer several advantages over conventional Portland cement-based concretes, including environmental sustainability, cost-effectiveness, and improved permeability. The use of alkali-activated concretes, as a replacement for Portland cement, provides significant environmental benefits, such as reducing carbon dioxide emissions by up to 80%, and facilitates the recycling and reuse of industrial and agricultural by-products. This study focuses on the development of alkali-activated concrete by incorporating industrial by-products like blast furnace slag and rice husk ash. A mixture of alkali-activated concrete based on blast furnace slag will be prepared, with partial substitution of Portland cement by these by-products by weight. The study will investigate the effects of these substitutions on the flexural and compressive strengths of the concrete over periods of 7, 28, and 90 days, as well as its fire resistance at temperatures of 200, 400, 600, and 800°C. The aim of this research is to contribute to the advancement of alkali-activated concrete technology, promoting the use of industrial by-products in the creation of more sustainable and environmentally-friendly construction materials.

References

Adam, A. A., & Horianto, X. X. X. (2014). The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar. Procedia Engineering, 95, 410-414. https://doi.org/10.1016/j.proeng.2014.12.199

Alahmari, T. S., Abdalla, T. A., & Rihan, M. A. M. (2023). Review of recent developments regarding the durability performance of eco-friendly geopolymer concrete. Buildings, 13(12), 3033. https://doi.org/10.3390/buildings13123033

Ali, T., Saand, A., Bangwar, D. K., Buller, A. S., & Ahmed, Z. (2021). Mechanical and durability properties of aerated concrete incorporating rice husk ash (RHA) as partial replacement of cement. Crystals, 11(6), 604. https://doi.org/10.3390/cryst11060604

Amran, M., Al-Fakih, A., Chu, S. H., Fediuk, R., Haruna, S., Azevedo, A., & Vatin, N. (2021). Long-term durability properties of geopolymer concrete: An in-depth review. Case Studies in Construction Materials, 15, e00661. https://doi.org/10.1016/J.CSCM.2021.E00661

Arularasi, V., Thamilselvi, P., Avudaiappan, S., Saavedra Flores, E. I., Amran, M., Fediuk, R., Vatin, N., & Karelina, M. (2021). Rheological behavior and strength characteristics of cement paste and mortar with fly ash and GGBS admixtures. Sustainability, 13(17), 9600. https://doi.org/10.3390/su13179600

ASTM International. (2002). ASTM C109/C109M-02: Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). https://cdn.standards.iteh.ai/samples/18736/1886184914c84503a7c2e10762f27381/ASTM-C109-C109M-02.pdf

ASTM International. (2003). ASTM C597-16: Standard test method for pulse velocity through concrete. https://cdn.standards.iteh.ai/samples/94392/666ac7ceb8354eefaab00c9ca74b2b1f/ASTM-C597-16.pdf

ASTM International. (2006). ASTM C642-06: Standard test method for density, absorption, and voids in hardened concrete. https://cdn.standards.iteh.ai/samples/48531/2dda55d49db741ebad1d409bacd4f0f8/ASTM-C642-06.pdf

ASTM International. (2012). ASTM C1202: Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. https://cdn.standards.iteh.ai/samples/79981/7d0c052c7f4c4e9f9d037138c568a532/ASTM-C1202-12.pdf

Barragán-Ramírez, R., González-Hernández, A., Bautista-Ruiz, J., Ospina, M., & Aperador Chaparro, W. (2024). Enhancing concrete durability and strength with fly ash, steel slag, and rice husk ash for marine environments. Materials, 17(12), 3001. https://doi.org/10.3390/ma17123001

Caixeta, R. V., Guiraldo, R. D., Berger, S. B., Kaneshima, E. N., Júnior, É. M. F., Drumond, A. C., Júnior, A. G., & Lopes, M. B. (2015). Influence of glass-fiber reinforcement on the flexural strength of different resin composites. Applied Adhesion Science, 3, 24. https://doi.org/10.1186/s40563-015-0053-1

Colangelo, F., Farina, I., Travaglioni, M., Salzano, C., Cioffi, R., & Petrillo, A. (2021). Eco-efficient industrial waste recycling for the manufacturing of fibre reinforced innovative geopolymer mortars: Integrated waste management and green product development through LCA. Journal of Cleaner Production, 312, 127777. https://doi.org/10.1016/J.JCLEPRO.2021.127777

De Sensale, G. R. (2006). Strength development of concrete with rice-husk ash. Cement and Concrete Composites, 28(2), 158-160. https://doi.org/10.1016/j.cemconcomp.2005.09.005

De Sensale, G. R. (2010). Effect of rice-husk ash on durability of cementitious materials. Cement and Concrete Composites, 32(9), 718-725. https://doi.org/10.1016/j.cemconcomp.2010.07.008

Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Assessment of the effects of rice husk ash particle size on strength, water permeability and workability of binary blended concrete. Construction and Building Materials, 24(11), 2145-2150. https://doi.org/10.1016/j.conbuildmat.2010.04.045

Habert, G., D’Espino De Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer-based concrete production: Reviewing current research trends. Journal of Cleaner Production, 19(11), 1229-1238. https://doi.org/10.1016/J.JCLEPRO.2011.03.012

Hardjito, D., & Rangan, B. V. (2005). Development and properties of low-calcium fly ash-based geopolymer concrete. https://espace.curtin.edu.au/bitstream/handle/20.500.11937/5594/19327_downloaded_stream_419.pdf?sequence=2

Hossain, S. S., Roy, P. K., & Bae, C. J. (2021). Utilization of waste rice husk ash for sustainable geopolymer: A review. Construction and Building Materials, 310, 125218. https://doi.org/10.1016/J.CONBUILDMAT.2021.125218

Huang, H., Gao, X., Wang, H., & Ye, H. (2017). Influence of rice husk ash on strength and permeability of ultra-high performance concrete. Construction and Building Materials, 149, 621-628. https://doi.org/10.1016/j.conbuildmat.2017.05.155

Hwang, C. L., & Huynh, T. P. (2015). Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Construction and Building Materials, 101(Part 1), 1-9. https://doi.org/10.1016/J.CONBUILDMAT.2015.10.025

Jamil, M., Khan, M. N. N., Karim, M. R., Kaish, A. B. M. A., & Zain, M. F. M. (2016). Physical and chemical contributions of Rice Husk Ash on the properties of mortar. Construction and Building Materials, 128, 185-198. https://doi.org/10.1016/j.conbuildmat.2016.10.029

Kim, R. Y., & Crasto, A. S. (1994). Longitudinal compression strength of glass fiber-reinforced composites. Journal of Reinforced Plastics and Composites, 13(4), 326-338. https://doi.org/10.1177/073168449401300404

Kim, Y. Y., Lee, B. J., Saraswathy, V., & Kwon, S. J. (2014). Strength and durability performance of alkali-activated rice husk ash geopolymer mortar. Scientific World Journal, 2014(1), 209584. https://doi.org/10.1155/2014/209584

Manzoor, T., Bhat, J. A., & Shah, A. H. (2024). Performance of geopolymer concrete at elevated temperature− A critical review. Construction and Building Materials, 420, 135578. https://doi.org/10.1016/j.conbuildmat.2024.135578

Mathew, G., & Issac, B. M. (2020). Effect of molarity of sodium hydroxide on the aluminosilicate content in laterite aggregate of laterised geopolymer concrete. Journal of Building Engineering, 32, 101486. https://doi.org/10.1016/j.jobe.2020.101486

Mathew, G., & Joseph, B. (2018). Flexural behaviour of geopolymer concrete beams exposed to elevated temperatures. Journal of Building Engineering, 15, 311-317. https://doi.org/10.1016/J.JOBE.2017.09.009

Mehta, A., & Siddique, R. (2018). Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties. Journal of Cleaner Production, 205, 49-57. https://doi.org/10.1016/J.JCLEPRO.2018.08.313

Memon, F. A., Nuruddin, M. F., Khan, S., Shafiq, N., & Ayub, T. (2013). Effect of sodium hydroxide concentration on fresh properties and compressive strength of self-compacting geopolymer concrete. Journal of Engineering Science and Technology, 8(1), 44-56.

Najigivi, A., Abdul Rashid, S., Nora A. Aziz, F., & Mohd Salleh, M. A. (2012). Water absorption control of ternary blended concrete with nano-SiO 2 in presence of rice husk ash. Materials and Structures, 45, 1007-1017. https://doi.org/10.1617/s11527-011-9813-y

Oberholzer, T. G., Du Preez, I. C., Lombard, R., & Pitout, E. (2007). Effect of woven glass fibre reinforcement on the flexural strength of composites: Scientific. South African Dental Journal, 62(9), 386-389.

Prasittisopin, L., & Trejo, D. (2017). Performance characteristics of blended cementitious systems incorporating chemically transformed rice husk Ash. Advances in Civil Engineering Materials, 6(1), 17-35. https://doi.org/10.1520/ACEM20160001

Ramezanianpour, A., Balapour, M., & Hajibandeh, E. (2018). Effect of nano rice husk ash against penetration of chloride ions in mortars. AUT Journal of Civil Engineering, 2(1), 97-102. https://doi.org/10.22060/ajce.2017.12387.5203

Sarker, P. K., Haque, R., & Ramgolam, K. V. (2013). Fracture behaviour of heat cured fly ash based geopolymer concrete. Materials & Design, 44, 580-586. https://doi.org/10.1016/j.matdes.2012.08.005

Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455. https://doi.org/10.1016/j.conbuildmat.2019.117455

Sturm, P., Gluth, G. J. G., Brouwers, H. J. H., & Kühne, H. C. (2016). Synthesizing one-part geopolymers from rice husk ash. Construction and Building Materials, 124, 961-966. https://doi.org/10.1016/j.conbuildmat.2016.08.017

Zhan, J., Liu, W., Wu, F., Li, Z., & Wang, C. (2018). Life cycle energy consumption and greenhouse gas emissions of urban residential buildings in Guangzhou city. Journal of Cleaner Production, 194, 318-326. https://doi.org/10.1016/j.jclepro.2018.05.124

Zheng, Y., Ning, R., & Zheng, Y. (2004). Glass fiber-reinforced polymer composites of high compressive strength. Journal of Reinforced Plastics and Composites, 23(16), 1729-1740. https://doi.org/10.1177/0731684404040127

Downloads

Published

30-12-2024

Issue

Section

Research Articles