A Case Study for 50 kVA Toroidal Core Partially Superconducting Transformer
DOI:
https://doi.org/10.29329/jaasci.2022.476.01Keywords:
Comsol, MgB2, Superconductor, TransformerAbstract
We report some numerical results obtained for 50kVA single phase partially superconducting toroidal and core power transformers. Transformers are calculated using the Comsol Multiphysics software with ac/dc and heat transfer modules. They are modeled in such a way that their primary parts (medium voltage) consist of copper windings and secondary parts (low voltage) are formed by superconducting MgB2 windings which are immersed into the liquid helium. Magnetic flux density profile on the iron core, primary and secondary currents, transformer power, and AC losses in superconducting windings are explored for one full cycle of AC voltage. Short-term temperature investigation for quenching showed that AC losses act as a heat source. We think that these numerical results are very important in terms of industrial-scale superconducting transformer applications because there are very few studies on MgB2 transformers. Our results will enable the design of toroidal-type power transformers that may be operable in practice. According to the numerical simulation results, it seems that a compact low cost superconducting MgB2 toroidal transformer can be realized with advances in cryostat systems and reducing AC losses. We suggest that the present study will contribute to the literature according to both the models applied and the results obtained.
References
Bogdanov, I., Kozub, S., Shcherbakov, P., Tkachenko, L., Fischer, E., Klos, F., Moritz, G., & Muehle, C. (2004). Study of electrical steel magnetic properties for fast cycling magnets of SIS100 and SIS300 rings. EPAC 2004. Lucerne.
Dai, S., Ma, T., Qiu, Q., Zhu, Z., Teng, Y., & Hu, L. (2016). Development of a 1250-kVA superconducting transformer and its demonstration at the superconducting substation. IEEE Transactions on Applied Superconductivity, 26(1), 5500107. https://doi.org/10.1109/TASC.2015.2501105
Dimitrov, I. K., Zhang, X., Solovyov, V. F., Chubar, O., & Li, Q. (2015). Rapid and semi-analytical design and simulation of a toroidal magnet made with YBCO and MgB2 superconductors. IEEE Transactions on Applied Superconductivity, 25(5), 5701208. https://doi.org/10.1109/TASC.2015.2448455
Donnier-Valentin, G., Tixador, P., & Vinot, E. (2001). Considerations about HTS superconducting transformers. IEEE Transactions on Applied Superconductivity, 11(1), 1498-1501. https://doi.org/10.1109/77.920059
Gómez, P., de León, F., & Hernández, I. A. (2011). Impulse-response analysis of toroidal core distribution transformers for dielectric design. IEEE Transactions on Power Delivery, 26(2), 1231-1238. https://doi.org/10.1109/TPWRD.2010.2087043
Grzesik, B., & Stepien, M. (2014). Toroidal superconducting transformer with cold magnetic core - results of analysis and measurements. Journal of Physics: Conference Series, 507, 032043. https://doi.org/10.1088/1742-6596/507/3/032043
Hascicek, Y. S., Akin, Y., Baldwin, T. W., Rindfleisch, M. M., Yue, Y., Sumption, M. D., & Tomsic, M. (2009). A MgB2 12.5 kVA superconductor transformer” Superconductor Science and Technology, 22, 065002. https://doi.org/10.1088/0953-2048/22/6/065002
Hayashi, H., Okamoto, H. Harimoto, T., Imayoshi, T., Tomioka, A., Bouno, T., Konno, M., & Iwakuma, M. (2007). A study for designing YBCO power transformer. Physica C: Superconductivity and Its Applications, 463-465, 1233-1236. https://doi.org/10.1016/j.physc.2007.04.294
Hernández, I., de León, F., & Gómez, P. (2011). Design formulas for the leakage inductance of toroidal distribution transformers. IEEE Transactions on Power Delivery, 26, 2197-2204. https://doi.org/10.1109/TPWRD.2011.2157536
Iwakuma, M., Adachi, K., Yun, K., Yoshida, K., Sato, S., Suzuki, Y., Umeno, T., Konno, M., Hayashi, H., Eguchi, T., Izumi, T., & Shiohara, Y. (2015). Development of cooling system for 66/6.9kV-20MVA REBCO superconducting transformers with Ne turbo-Brayton refrigerator and subcooled liquid nitrogen. IOP Conference Series: Materials Science and Engineering, 101, 012026. https://doi.org/10.1088/1757-899X/101/1/012026
Kim, W-S., Hahn, S-Y., Choi, K-D., Joo, H-G., & Hong, K-W. (2003). Design of a 1 MVA high TC superconducting transformer. IEEE Transactions on Applied Superconductivity, 13(2), 2291-2293. https://doi.org/10.1109/TASC.2003.813080
Musenich, R., Calvelli, V., Farinon, S., Battiston, R., Burger, W. J., & Spillantini, P. (2014). A magnesium diboride superconducting toroid for astroparticle shielding. IEEE Transactions on Applied Superconductivity, 24(3), 4601504. https://doi.org/10.1109/TASC.2013.2287047
Pei, X., Zeng, X., Smith, A. C., & Malkin, D. (2015). Resistive superconducting fault current limiter coil design using multistrand MgB2 wire. IEEE Transactions on Applied Superconductivity, 25(3), 5602105. https://doi.org/10.1109/TASC.2015.2390635
Pleșca, A. T. (2013). Thermal analysis of toroidal transformers using finite element method. International Journal of Physical and Mathematical Sciences, 7(4), 590-599. https://doi.org/10.5281/zenodo.1082742
Schlosser, R., Schmidt, H., Leghissa, M., & Meinert, M. (2003). Development of high temperature superconducting transformers for railway applications. IEEE Transactions on Applied Superconductivity, 13(2), 2325-2330. https://doi.org/10.1109/TASC.2003.813118
Schwenterly, S. W., Mehta, S. P., Walker, M. S., & Jones, R. H. (2002). Development of HTS power transformers for the 21st century: Waukesha Electric Systems/IGC-SuperPower/RG&E/ORNL SPI collaboration. Physica C: Superconductivity, 382(1), 1-6. https://doi.org/10.1016/S0921-4534(02)01168-1
Šouc, J., & Gömöry, F. (2002). New approach to the ac loss measurement in the superconducting secondary circuit of an iron-core transformer. Superconductor Science and Technology, 15, 927-932. https://doi.org/10.1088/0953-2048/15/6/316
Suarez, P., Alvarez, A., Perez, B., Caceres, D., Cordero, E., & Ceballos, J-M. (2005). Influence of the shape in the losses of solenoidal air-core transformers. IEEE Transactions on Applied Superconductivity, 15(2), 1855-1858. https://doi.org/10.1109/TASC.2005.849312
ter Brake, H. J. M., & Wiegerinck, G. F. M. (2002). Low-power cryocooler survey. Cryogenics, 42(11), 705-718. https://doi.org/10.1016/S0011-2275(02)00143-1
Wu, R., Wang, Y., Yan, Z., He, Z., & Wang, L. (2013). Simulation and experimental investigation of an inductive pulsed power supply based on the head-to-tail series model of an HTS air-core pulsed transformer. IEEE Transactions on Applied Superconductivity, 23(4), 5701305. https://doi.org/10.1109/TASC.2013.2251463
Yamaguchi, H., Sato, Y., & Kataoka, T. (1992). Loss characteristics of air-core superconducting transformer. IEEE Transactions on Magnetics, 28(5), 2232-2234. https://doi.org/10.1109/20.179453
Yamaguchi, H., Sato, Y., & Kataoka, T. (1996). Conceptual design of air-core superconducting power transformer for cable transmission system. IEEE Transactions on Power Delivery, 11(2), 917-923. https://doi.org/10.1109/61.489352
Yazdani-Asrami, M., Gholamian, S. A., Mirimani, S. M., & Adabi, J. (2021). Influence of field-dependent critical current on harmonic AC loss analysis in HTS coils for superconducting transformers supplying non-linear loads. Cryogenics, 113, 103234. https://doi.org/10.1016/j.cryogenics.2020.103234