Influence of Mg, Sr, TiB, and Cu Additions on the Microstructure and Mechanical Behavior of A356 Alloy Wheels
DOI:
https://doi.org/10.61326/jaasci.v4i1-2.420Keywords:
A356 alloy, Alloying elements, Mechanical properties, MicrostructureAbstract
This research investigates the influence of magnesium (Mg), strontium (Sr), titanium boride (TiB), and copper (Cu) additions on the mechanical and microstructural behavior of A356 aluminum alloy wheel components produced by low-pressure casting and subjected to T6 heat treatment. Tensile and hardness tests were performed across three critical wheel regions to evaluate localized performance variations caused by casting conditions. Results demonstrate that increasing Mg content from 0.05 wt.% to 0.15 wt.% leads to a measurable decrease in ductility, with elongation reductions of 0.3–0.7% depending on the region, while simultaneously increasing hardness through Mg₂Si precipitation strengthening. Sr additions at realistic modification levels (0.005–0.015 wt.%) produced a clear transition of eutectic Si from acicular to spheroidized morphology, improving yield strength by approximately 15–20 MPa, particularly in the inner flange. Copper additions enhanced tensile and yield strength through precipitation hardening, although excessive Cu levels reduced ductility due to the presence of coarse intermetallic phases. Overall, the findings demonstrate that controlled additions of Mg, Sr, TiB, and Cu significantly influence the regional mechanical response of A356 alloy wheels. The study highlights the importance of localized microstructural analysis for optimizing alloy design and improving casting performance.
References
Aguirre-De la Torre, E., Pérez-Bustamante, R., Camarillo-Cisneros, J., Gómez-Esparza, C. D., Medrano-Prieto, H. M., & Martínez-Sánchez, R. (2013). Mechanical properties of the A356 aluminum alloy modified with La/Ce. Journal of Rare Earths, 31(8), 811-816. https://doi.org/10.1016/S1002-0721(12)60363-9
Cáceres, C. H., & Rovera, D. M. (2001). Solid solution strengthening in concentrated Mg–Al alloys. Journal of Light Metals, 1(3), 151-156. https://doi.org/10.1016/S1471-5317(01)00008-6
Chowwanonthapunya, T., & Peeratatsuwan, C. (2019). Grain refining effect of Al 5Ti 1B master alloy on microstructures and mechanical properties of A356 alloy. Key Engineering Materials, 803, 17-21. https://doi.org/10.4028/www.scientific.net/KEM.803.17
Colak, M., Findik, F., & Yetgin, S. H. (2016). Investigation of the effect of adding Cu on Al alloys for wear and friction properties. International Journal of Research in Engineering and Technology, 5(7), 448-453.
Deepak, G. D., Kashimat, N., Manjunathaiah, K. B., Nayak, V., Anne, G., & Sharma, S. (2025). Optimizing the tribological performance of copper reinforced A356 aluminum alloy: Influence of heat treatment and composition variation. Journal of Composites Science, 9(6), 287. https://doi.org/10.3390/jcs9060287
Do Lee, C. (2007). Effects of microporosity on tensile properties of A356 aluminum alloy. Materials Science and Engineering: A, 464(1-2), 249-254. https://doi.org/10.1016/j.msea.2007.01.130
Gandin, C. A. (2000). Modeling of microstructure formation in solidification processes. Iron and Steel Institute of Japan International, 40, 971.
Gowri, S., & Samuel, F. H. (1994). Influence of aging and solution treatment on the tensile properties of Al–Si–Cu–Mg cast alloys. Metallurgical and Materials Transactions A, 25A, 437-448.
Kashimat, N., Sharma, S., Nayak, R., Manjunathaiah, K. B., Shettar, M., & Chennegowda, G. M. (2023). Experimental investigation of mechanical property and wear behaviour of T6 treated A356 alloy with minor addition of copper and zinc. Journal of Composites Science, 7(4), 149. https://doi.org/10.3390/jcs7040149
Kashyap, K. T., Murali, S., & Murthy, K. S. S. (1993). Structure and properties of aluminum grain refined with Al–Ti–B. Materials Science and Technology, 9, 189-203.
Kori, S. A., Murty, B. S., & Chakraborty, M. (2000). Influence of grain refiners and modifiers on eutectic nucleation and formation in Al–Si alloys. Materials Science and Engineering: A, 283, 94-104.
Musfirah, A. H., & Jaharah, A. G. (2012). Magnesium and aluminum alloys in automotive industry. Journal of Applied Sciences Research, 8(9), 4865-4875.
Nnakwo, K. C., Nwajioke, C. T., Chukwuneke, J. L., Ugwuanyi, B. C., Ogbunaoffor, K. C., & Ozoh, C. C. (2024). Microstructure evolution in A356 alloy subjected to controlled heat treatment regimes processes. Discover Applied Sciences, 6, Article 497. https://doi.org/10.1007/s42452-024-06143-2
Pramod, S. L., Ravikirana, R., Prasada Rao, A. K., Murty, B. S., & Bakshi, S. R. (2019). Microstructure and mechanical properties of as-cast and T6 treated Sc modified A356-5TiB₂ in-situ composite. Materials Science and Engineering: A, 739, 383-394. https://doi.org/10.1016/j.msea.2018.10.080
Shabestari, S. G., & Moemeni, H. (2004). Effect of copper and solidification conditions on the microstructure and mechanical properties of Al–Si–Mg alloys. Journal of Materials Processing Technology, 153-154, 193-198. https://doi.org/10.1016/j.jmatprotec.2004.04.302
Stojanovic, B., Bukvic, M., & Epler, I. (2018). Application of aluminum and aluminum alloys in engineering. Advanced Engineering Letters, 3(2), Article 2. https://doi.org/10.18485/aeletters.2018.3.2.2
Tash, M., Samuel, F. H., Mucciardi, F., Doty, H. W., & Valtierra, S. (2006). Effect of metallurgical parameters on the machinability of heat-treated 356 and 319 aluminum alloys. Materials Science and Engineering: A, 434(1-2), 207-217. https://doi.org/10.1016/j.msea.2006.06.129
Veldman, N. L. M., Dahle, A. K., StJohn, D. H., & Arnberg, L. (2001). Effect of grain refiner fading on equiaxed zone formation in aluminum alloys. Metallurgical and Materials Transactions A, 32A, 147-155.
Wang, Q. G., & Davidson, C. J. (2001). The influence of porosity on the fatigue life of A356-T6 aluminum alloy. Journal of Materials Science, 36, 739-750.
Xu, M., Ding, W.-W., Hu, L.-W., Chen, S.-H., Zhang, H.-X., Yu, H.-C., & Zhao, W.-J. (2024). Effects of a novel refiner Al-3Ti-4.35La combined with Sr on microstructure and mechanical properties of as-cast A356 alloy. China Foundry, 21, 641-650. https://doi.org/10.1007/s41230-024-3063-4
Yan, W., Fu, G., Xu, Y., Lai, W., & Chen, H. (2021). Effect of Sr addition on the microstructure and properties of the A356 Al alloy. Materiali in Tehnologije, 55(3), 443. https://doi.org/10.17222/mit.2020.038
Yang, Z. S., Dong, Y., Li, W., & Liu, X. (2022). Strengthening mechanism of Sr element on 6063 Al alloys. Materials Research Express, 9(4), 046501. https://doi.org/10.1088/2053-1591/ac60e4
Zhang, S., Yi, W., Zhong, J., Gao, J., Lu, Z., & Zhang, L. (2023). Computer alloy design of Ti-modified Al-Si-Mg-Sr casting alloys for achieving simultaneous enhancement in strength and ductility. Materials, 16(1), 306. https://doi.org/10.3390/ma16010306
Zhang, Y., & Sills, R. B. (2023). Strengthening via Orowan looping of misfitting plate-like precipitates. Journal of the Mechanics and Physics of Solids, 173, 105234. https://doi.org/10.1016/j.jmps.2023.105234
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ezgi Zengin, Parvina Irgasheva

This work is licensed under a Creative Commons Attribution 4.0 International License.
