Data Mining Techniques for Weld Defect Detection by Image Classification
DOI:
https://doi.org/10.61326/jaasci.v4i1-2.423Keywords:
Data mining, Defects, Image classification, Quality, WeldingAbstract
Data mining techniques have become indispensable in automating defect detection and classification in industrial welding processes, particularly through the use of image-based data. This study investigates the application of data mining methodologies for detecting and classifying weld defects using photographic datasets processed with the Orange data mining software. By leveraging Orange's visual programming interface, the research demonstrates how image data can be analyzed and modeled to identify welding defects. Key machine learning techniques, including Artificial Convolutional Neural Networks, Logistic Regression, Random Forest, k-Nearest Neighbors for image classification, were applied to achieve high accuracy in defect recognition. Special emphasis was placed on image preprocessing and feature extraction to enhance model performance. The results confirm that Orange offers an intuitive platform for integrating image-based data into sophisticated machine learning workflows, enabling accurate and interpretable classification outcomes. This approach highlights the potential of combining image data with domain-specific software to optimize defect detection processes and improve manufacturing quality.
References
Aggarwal, C. C. (2015). Data mining: The textbook. Springer. https://doi.org/10.1007/978-3-319-14142-8
Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115. https://doi.org/10.1016/j.inffus.2019.12.012
Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., ... & Zupan, B. (2013). Orange: data mining toolbox in Python. The Journal of Machine Learning Research, 14(1), 2349-2353.
Hastie, T., Tibshirani, R., & Friedman, J. (2017). The elements of statistical learning: Data mining, inference, and prediction. Springer. https://doi.org/10.1007/978-0-387-84858-7
Hosmer Jr., D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression. Wiley.
Kaggle. (2010). Kaggle. Retrieved Oct 3, 2025, from https://www.kaggle.com/
Kramer, M. (2021). What is data mining and data extraction – A full overview. Retrieved Oct 3, 2025, from https://netnut.io/what-is-data-mining-and-data-extraction-full-overview/
Liwanag, G. L. L., Ebardo, R. A., & Cheng, D. C. (2025). Low-code and no-code development in the era of artificial intelligence: A systematic review. Data and Metadata, 4, 1218. https://doi.org/10.56294/dm20251218
Mladenov, V., & Yordanova, S. (2006). Fuzzy control and neural networks. Technical University - Sofia. (In Bulgarian)
MyServerName. (2021). Top 15 best free data mining tools. Retrieved Oct 3, 2025, from https://myservername.com/top-15-best-free-data-mining-tools
Orange Data Mining. (2020). Image embedding. Retrieved Oct 3, 2025, from https://orangedatamining.com/widget-catalog/image-analytics/imageembedding/
Palma-Ramírez, D., Ross-Veitía, B. D., Font-Ariosa, P., Espinel-Hernández, A., Sanchez-Roca, A., Carvajal-Fals, H., Nuñez-Alvarez, J. R., & Hernández-Herrera, H. (2024). Deep convolutional neural network for weld defect classification in radiographic images. Heliyon, 10(9), e30590. https://doi.org/10.1016/j.heliyon.2024.e30590
Say, D., Zidi, S., Qaisar, S. M., & Krichen, M. (2023). Automated categorization of multiclass welding defects using the X-ray image augmentation and convolutional neural network. Sensors, 23(14), 6422. https://doi.org/10.3390/s23146422
Shimaoka, A. M., Ferreira, R. C., & Goldman, A. (2024). The evolution of CRISP-DM for data science: Methods, processes and frameworks. SBC Computing Reviews, 4(1), 28–43. https://doi.org/10.5753/reviews.2024.3757
Tableau. (2025). How data mining works: A guide. Retrieved Oct 3, 2025, from https://www.tableau.com/learn/articles/what-is-data-mining
Weiher, K., Rieck, S., Pankrath, H., Beuss, F., Geist, M., Sender, J., & Fluegge, W. (2023). Automated visual inspection of manufactured parts using deep convolutional neural networks and transfer learning. Procedia CIRP, 120, 858-863. https://doi.org/10.1016/j.procir.2023.09.088
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Asya Asenova-Robinzonova, Lilyana Koleva, Elena Koleva

This work is licensed under a Creative Commons Attribution 4.0 International License.
