Observation of Space Charge Limited Current in Schottky Diodes with V2O5 Interfacial Layer Prepared by Radio Frequency Magnetron Sputtering

Authors

DOI:

https://doi.org/10.29329/jaasci.2022.476.04

Keywords:

Barrier height, Current-voltage, Ideality factor, Rf magnetron sputtering, Schottky diode, V2O5

Abstract

Electrical properties of V2O5/n-Si Schottky barrier diodes prepared by rf magnetron sputtering of vanadium pentoxide (V2O5) on n-Si wafer have been investigated. The current-voltage (I–V) and capacitance-voltage (C-V) measurements of the diode have been performed in the dark at the room temperature. The saturation current (I0), ideality factor (n), barrier height (ΦB) values of the diode have been determined as 6.68x10-8 A, 1.35, and 0.755 eV, respectively. The series resistance (RS) values from Norde, Cheung and Nicollian & Brews methods have been determined as 199 Ω, 251 Ω, and 144 Ω, respectively. The energy distribution of interface state density (NSS) was determined, and the values of against the energy values of NSS in the vary between EC-0.462 eV and EC-0.713 eV were obtained 4.343x1016 eV-1 cm-2 and 3.282x1015 eV-1 cm-2, respectively. The barrier height and metal oxide thickness () values using capacitance-voltage (C-V) measurements in the frequency of 1 MHz has also been calculated as 0.949 eV and 37.4 nm, respectively. The prepared diode showed abnormal diode characteristics, indicating the existence of a space-charge limited (SCL) current. From forward bias I-V characteristics, the ohmic, trapped filled space charge limited current (TFSCLC) and SCLC conduction behaviors were observed at low, middle, and high voltages, respectively. Experimental results indicated that the prepared V2O5 film on n-Si can be utilized in electronic applications.

References

Akande, A. A., Mwakikunga, B. W., Rammutla, K. E., & Machatine, A. (2015). Larger selectivity of the V2O5 nano-particles sensitivity to NO2 than NH3. Sensors & Transducers, 192(9), 61-65.

Akgul, F. D., Eymur, S., Akin, U., Yuksel, O. F., Karadeniz, H., & Tugluoglu, N. (2021). Investigation of Schottky emission and space charge limited current (SCLC) in Au/SnO2/n-Si Schottky diode with gamma-ray irradiation. Journal of Materials Science: Materials in Electronics, 32(12), 15857-15863. https://doi.org/10.1007/s10854-021-06138-4

Al-Kuhaili, M. F., Khawaja, E. E., Ingram, D. C., & Durrani, S. M. A. (2004). A study of thin films of V2O5 containing molybdenum from an evaporation boat. Thin Solid Films, 460(1), 30-35. https://doi.org/10.1016/j.tsf.2004.01.076

Balasubramani, V., Chandrasekaran, J., Marnadu, R., Vivek, P., Maruthamuthu, S., & Rajesh, S. (2019). Impact of annealing temperature on spin coated V2O5 thin films as interfacial layer in Cu/V2O5/n-Si structured Schottky barrier diodes. Journal of Inorganic and Organometallic Polymers and Materials, 29(5), 1533-1547. https://doi.org/10.1007/s10904-019-01117-z

Bayhan, H., & Bayhan, M. (2011). A simple approach to determine the solar cell diode ideality factor under illumination. Solar Energy, 85(5), 769-775. https://doi.org/10.1016/j.solener.2011.01.009

Benkahoul, M., Zayed, M. K., Solieman, A., & Alamri, S. N. (2017). Spray deposition of V4O9 and V2O5 thin films and post-annealing formation of thermochromic VO2. Journal of Alloys and Compounds, 704, 760-768. https://doi.org/10.1016/j.jallcom.2017.02.088

Bokdam, M., Cakir, D., & Brocks, G. (2011). Fermi level pinning by integer charge transfer at electrode-organic semiconductor interfaces. Applied Physics Letters, 98(11), 113303. https://doi.org/10.1063/1.3565963

Card, H. C., & Rhoderick, E. H. (1971). Studies of tunnel MOS diodes I. interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4(10), 1589. https://doi.org/10.1088/0022-3727/4/10/319

Cheung, S. K., & Cheung, N. W. (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 49(2), 85-87. https://doi.org/10.1063/1.97359

Dong, X., Su, Y., Wu, Z., Xu, X., Xiang, Z., Shi, Y., Chen, W., Dai, J., Huang, Z., Wang, T., & Jiang, Y. (2021). Reactive pulsed DC magnetron sputtering deposition of vanadium oxide thin films: Role of pulse frequency on the film growth and properties. Applied Surface Science, 562, 150138. https://doi.org/10.1016/j.apsusc.2021.150138

Fateh, N., Fontalvo, G. A., Cha, L., Klunsner, T., Hlawacek, G., Teichert, C., & Mitterer, C. (2008). Synthesis-structure relations for reactive magnetron sputtered V2O5 films. Surface & Coatings Technology, 202(8), 1551-1555. https://doi.org/10.1016/j.surfcoat.2007.07.010

Ihsan, M., Meng, Q., Li, L., Li, D., Wang, H., Seng, K. H., Chen, Z., Kennedy, S. J., Guo, Z., & Liu, H.-K. (2015). V2O5/mesoporous carbon composite as a cathode material for lithium-ion batteries. Electrochimica Acta, 173, 172-177. https://doi.org/10.1016/j.electacta.2015.05.060

Karaca, G. Y., Eren, E., Alver, C., Koc, U., Uygun, E., Oksuz, L., & Oksuz, A. U. (2017). Plasma modified V2O5/PEDOT hybrid based flexible electrochromic devices. Electroanalysis, 29(5), 1324-1331. https://doi.org/10.1002/elan.201600631

Kaya, M. D., Sertel, B. C., Sonmez, N. A., Cakmak, M., & Ozcelik, S. (2020). Thickness-dependent physical properties of sputtered V2O5 films and Ti/V2O5/n-Si Schottky barrier diode. Applied Physics A: Materials Science & Processing, 126(11), 830. https://doi.org/10.1007/s00339-020-04023-1

Kaya, M. D., Sertel, B. C., Sonmez, N. A., Cakmak, M., & Ozcelik, S. (2021). The current-voltage characteristics of V2O5/n-Si Schottky diodes formed with different metals. Journal of Materials Science: Materials in Electronics, 32(15), 20284-20294. https://doi.org/10.1007/s10854-021-06534-w

Kumar, N. S., Raman, M. S., Chandrasekaran, J., Priya, R., Chavali, M., & Suresh, R. (2016). Effect of post-growth annealing on the structural, optical and electrical properties of V2O5 nanorods and its fabrication, characterization of V2O5/p-Si junction diode. Materials Science in Semiconductor Processing, 41, 497-507. https://doi.org/10.1016/j.mssp.2015.08.020

Liu, H. M., Wang, Y. G., Wang, K. X., Hosono, E., & Zhou, H. S. (2009). Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. Journal of Materials Chemistry, 19(18), 2835-2840. https://doi.org/10.1039/b821799h

Liu, Y. Y., Clark, M., Zhang, Q. F., Yu, D. M., Liu, D. W., Liu, J., & Cao, G. Z. (2011). V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries. Advanced Energy Materials, 1(2), 194-202. https://doi.org/10.1002/aenm.201000037

Liu, X. Y., Zeng, J. H., Yang, H. N., Zhou, K., & Pan, D. (2018). V2O5-Based nanomaterials: Synthesis and their applications. RSC Advances, 8(8), 4014-4031. https://doi.org/10.1039/c7ra12523b

Luo, Z., Wu, Z., Xu, X., Du, M., Wang, T., & Jiang, Y. (2010). Impact of substrate temperature on the microstructure, electrical and optical properties of sputtered nanoparticle V2O5 thin films. Vacuum, 85(2), 145-150. https://doi.org/10.1016/j.vacuum.2010.05.001

Mahato, S., Biswas, D., Gerling, L. G., Voz, C., & Puigdollers, J. (2017). Analysis of temperature dependent current-voltage and capacitance-voltage characteristics of an Au/V2O5/n-Si Schottky diode. AIP Advances, 7(8), 085313. https://doi.org/10.1063/1.4993553

Norde, H. (1979). A modified forward I‐V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50(7), 5052-5053. https://doi.org/10.1063/1.325607

Ongun, O., Tasci, E., Emrullahoglu, M., Akin, U., Tugluoglu, N., & Eymur, S. (2021). Fabrication, illumination dependent electrical and photovoltaic properties of Au/BOD-Pyr/n-Si/In Schottky diode. Journal of Materials Science: Materials in Electronics, 32(12), 15707-15717. https://doi.org/10.1007/s10854-021-06122-y

Qiao, Y., Chen, J., Lu, Y., Yang, X., Yang, H., & Xu, K. (2014). Fabrication of low phase transition temperature vanadium oxide films by direct current reactive magnetron sputtering and oxidation post-anneal method. Infrared Physics & Technology, 67, 126-130. https://doi.org/10.1016/j.infrared.2014.07.016

Rhoderick, E. H., & Williams, R. H. (1988). Metal-semiconductor contacts. Clarendon Press.

Saad, M., & Kassis, A. (2011). Current-voltage analysis of the record-efficiency CuGaSe2 solar cell: Application of the current separation method and the interface recombination model. Solar Energy Materials and Solar Cells, 95(7), 1927-1931. https://doi.org/10.1016/j.solmat.2011.02.022

Senarslan, E., Guzeldir, B., & Saglam, M. (2017). Influence of anodic passivation on electrical characteristics of Al/p-Si/Al and Al/V2O5/p-Si/Al diodes. Journal of Materials Science: Materials in Electronics, 28(11), 7582-7592. https://doi.org/10.1007/s10854-017-6450-4

Sigaud, P., Chazalviel, J. N., Ozanam, F., & Lahlil, K. (2003). Increased hole injection in organic diodes by grafting of dipolar molecules on indium-tin oxide. Applied Surface Science, 218(1-4), 54-57. https://doi.org/10.1016/s0169-4332(03)00580-4

Tezcan, A. O., Eymur, S., Tasci, E., Emrullahoglu, M., & Tugluoglu, N. (2021). Investigation of electrical and photovoltaic properties of Au/n-Si Schottky diode with BOD-Z-EN interlayer. Journal of Materials Science: Materials in Electronics, 32(9), 12513-12520. https://doi.org/10.1007/s10854-021-05886-7

Tuğluoğlu, N., & Karadeniz, S. (2012). Analysis of current-voltage and capacitance-voltage characteristics of perylene-monoimide/n-Si Schottky contacts. Current Applied Physics, 12(6), 1529-1535. https://doi.org/10.1016/j.cap.2012.04.027

Wang, S. Q., Li, S. R., Sun, Y., Feng, X. Y., & Chen, C. H. (2011). Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy & Environmental Science, 4(8), 2854-2857. https://doi.org/10.1039/c1ee01172c

Yan, L., & Gao, Y. L. (2002). Interfaces in organic semiconductor devices. Thin Solid Films, 417(1-2), 101-106, https://doi.org/10.1016/s0040-6090(02)00586-2

Downloads

Published

21-12-2022

Issue

Section

Research Articles