Investigation of the Electrical Properties of PAN-GO/p-Si Schottky Diode
DOI:
https://doi.org/10.29329/jaasci.2022.476.05Keywords:
Graphene oxide, Norde function, Polyacrylonitrile, Schottky diodeAbstract
In this article, the electrical properties of PAN-GO/p-Si Schottky diode were investigated in the dark at room temperature. Field-emission scanning electron microscopy (FE-SEM) was utilized to study the structure of the PAN:GO interfacial layer. Diode parameters were calculated according to thermionic emission theory. By using the I-V characteristic of the prepared PAN-GO diode, the ideality factor (n), barrier height (ФB) and series resistance (Rs) values were evaluated with the I-V method and Norde functions. The barrier height values calculated with the I-V and Norde function were found to be 0.767 eV and 0.761 eV, respectively. The ideality factor was found to be 2.078 from the I-V method. The series resistance value of the diode was calculated as 42 kΩ using Norde functions. Energy-dependence profile of interface state density was determined from the current-voltage characteristics by considering the voltage-dependence of barrier height and ideality factor The interface state density (Nss) values of the PAN-GO/p-Si Schottky diode are 9.5x1011 eV-1cm-2 for 0.35-Ev eV and 1.03x1011 eV-1cm-2 for 0.74-Ev eV. Experimental results approved that the PAN-GO interfacial layer improved the performance of metal-semiconductor Schottky diode in respect of low ideality factor, interface state density, and high barrier height and rectification rate.
References
Aftab, S., Samiya, M., Liao, W., Iqbal, M. W., Ishfaq, M., Ramachandraiah, K., Ajmal, H. M. S., Haque, H. M. U., Yousuf, S., Ahmed, Z., Usman khan, M., Rehman, A. U., & Iqbal, M. Z. (2021). Switching photodiodes based on (2D/3D) PdSe2/Si heterojunctions with a broadband spectral response. Journal of Materials Chemistry C, 9(11), 3998-4007. https://doi.org/10.1039/d0tc05894g
Akin, B., Farazin, J., Altındal, Ş., & Azizian-Kalandaragh, Y. (2022). A comparison electric-dielectric features of Al/p-Si (MS) and Al/ (Al2O3:PVP)/p-Si (MPS) structures using voltage–current (V–I) and frequency–impedance (f–Z) measurements. Journal of Materials Science: Materials in Electronics, 33(27), 21963-21975. https://doi.org/10.1007/s10854-022-08984-2
Al-Ahmadi, N. A. (2020). Metal oxide semiconductor-based Schottky diodes: A review of recent advances. Materials Research Express, 7(3) 032001. https://doi.org/10.1088/2053-1591/ab7a60
Aldirmaz, E., Guler, M., Guler, E., Dere, A., Tataroğlu, A., Al-Sehemi, A. G., Al-Ghamdi, A. A., & Yakuphanoglu, F. (2018). A shape memory alloy based on photodiode for optoelectronic applications. Journal of Alloys and Compounds, 743, 227-233. https://doi.org/10.1016/j.jallcom.2018.01.380
Aldirmaz, E., Güler, M., & Güler, E. (2022). Illumination intensities effect on electronic properties of Fe-Ni-Mn/p-Si Schottky diode. Journal of Materials Science: Materials in Electronics, 33(7), 4132-4144. https://doi.org/10.1007/s10854-021-07609-4
Altındal, Ş., Azizian-Kalandaragh, Y., Ulusoy, M., & Pirgholi-Givi, G. (2022). The illumination effects on the current conduction mechanisms of the Au/(Er2O3:PVC)/n-Si (MPS) Schottky diodes. Journal of Applied Polymer Science, 139(27), 1-12. https://doi.org/10.1002/app.52497
Batır, G. G., Arık, M., Caldıran, Z., Turut, A., & Aydogan, S. (2018). Synthesis and characterization of reduced graphene oxide/rhodamine 101 (rGO-Rh101) nanocomposites and their heterojunction performance in rGO-Rh101/p-Si device configuration. Journal of Electronic Materials, 47(1), 329-336. https://doi.org/10.1007/s11664-017-5758-4
Berktaş, Z., Yıldız, M., Seven, E., Oz Orhan, E., & Altındal, Ş. (2022). PEI N-doped graphene quantum dots/p-type silicon Schottky diode. FlatChem, 36, 100436. https://doi.org/10.1016/j.flatc.2022.100436
Bohlin, K. E. (1986). Generalized Norde plot including determination of the ideality factor. Journal of Applied Physics, 60(3), 1223-1224. https://doi.org/10.1063/1.337372
Çaldıran, Z. (2021). Modification of Schottky barrier height using an inorganic compound interface layer for various contact metals in the metal/p-Si device structure. Journal of Alloys and Compounds, 865, 158856. https://doi.org/10.1016/j.jallcom.2021.158856
Eswaran, M., Chokkiah, B., Pandit, S., Rahimi, S., Dhanusuraman, R., Aleem, M., & Mijakovic, I. (2022). A road map toward field-effect transistor biosensor technology for early stage cancer detection. Small Methods, 6(10). https://doi.org/10.1002/smtd.202200809
Ferrag, C., Noroozifar, M., Modarresi-Alam, A. R., & Kerman, K. (2022). Graphene oxide hydrogel electrolyte for improving the performance of electropolymerized polyaniline solar cells. Journal of Power Sources, 542, 231796. https://doi.org/10.1016/j.jpowsour.2022.231796
Gholami, S., Hajghassem, H., & Erfanian, A. R. (2009). The gaussian distribution of inhomogeneous barrier heights in PtSi/p-Si Schottky diodes. IEICE Electronics Express, 6(13), 972-978. https://doi.org/10.1587/elex.6.972
Güllü, Ö., & Türüt, A. (2010). Electrical analysis of organic dye-based MIS Schottky contacts. Microelectronic Engineering, 87(12), 2482-2487. https://doi.org/10.1016/j.mee.2010.05.004
Gupta, R. K., Ghosh, K., & Kahol, P. K. (2009). Effect of temperature on current-voltage characteristics of Cu2O/p-Si Schottky diode. Physica E: Low-Dimensional Systems and Nanostructures, 41(5), 876-878. https://doi.org/10.1016/j.physe.2008.12.025
Hosseini, Z., Azizian-Kalandaragh, Y., Sobhanian, S., Pirgholi-Givi, G., & Kouhi, M. (2022). Comparison of capacitance-frequency and current-voltage characteristics of Al/CdS-PVP/p-Si and Al/p-Si structures. Physica B: Condensed Matter, 640, 413836. https://doi.org/10.1016/j.physb.2022.413836
Hue, N. T., Wu, Q., Liu, W., Bu, X., Wu, H., Wang, C., Li, X., & Wang, X. (2020). Graphene oxide/graphene hybrid film with ultrahigh ammonia sensing performance. Nanotechnology, 32(11), 115501. https://doi.org/10.1088/1361-6528/abd05a
Iwai, H., Sze, S. M., Taur, Y., & Wong, H. (2013). MOSFETs. In J. N. Burghartz (Ed.), Guide to state-of-the-art electron devices (pp. 21-36). Wiley. https://doi.org/10.1002/9781118517543.ch2
Jaworski, S., Sawosz, E., Kutwin, M., Wierzbicki, M., Hinzmann, M., Grodzik, M., Winnicka, A., Lipińska, L., Włodyga, K., & Chwalibog, A. (2015). In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma. International Journal of Nanomedicine, 10, 1585-1596. https://doi.org/10.2147/IJN.S77591
Kang, B., Cai, Y., & Wang, L. (2016). Improvement of external quantum efficiency of silicide Schottky-barrier detectors in the 3 to 5 μ m waveband with subwavelength-grating incident plane. Optical Engineering, 55(4), 047103. https://doi.org/10.1117/1.oe.55.4.047103
Kaplan, N., Taşcı, E., Emrullahoğlu, M., Gökce, H., Tuğluoğlu, N., & Eymur, S. (2021). Analysis of illumination dependent electrical characteristics of α- styryl substituted BODIPY dye-based hybrid heterojunction. Journal of Materials Science: Materials in Electronics, 32(12), 16738-16747. https://doi.org/10.1007/s10854-021-06231-8
Karataş, Ş., & Yumuk, M. (2022). Electrical characteristics of Al/(GO:PTCDA)/p-type Si structure under dark and light illumination: photovoltaic properties at 40 mW cm-2. Journal of Materials Science: Materials in Electronics, 33(14), 10800-10813. https://doi.org/10.1007/s10854-022-08061-8
Kedambaimoole, V., Kumar, N., Shirhatti, V., Nuthalapati, S., Nayak, M. M., & Konandur, R. (2020). Electric spark induced instantaneous and selective reduction of graphene oxide on textile for wearable electronics. ACS Applied Materials and Interfaces, 12(13), 15527-15537. https://doi.org/10.1021/acsami.9b22497
Koca, M., Yilmaz, M., Ekinci, D., & Aydoğan. (2021). Light sensitive properties and temperature-dependent electrical performance of n-TiO2/p-Si anisotype heterojunction electrochemically formed TiO2 on p-Si. Journal of Electronic Materials, 50(9), 5184-5195. https://doi.org/10.1007/s11664-021-09040-1
Kumar, M., Bhati, V. S., & Kumar, M. (2017). Effect of Schottky barrier height on hydrogen gas sensitivity of metal/TiO2 nanoplates. International Journal of Hydrogen Energy, 42(34), 22082-22089. https://doi.org/10.1016/j.ijhydene.2017.07.144
Lu, A., Kiefer, A., Schmidt, W., & Schüth, F. (2004). Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures. Chemistry of Materials, 16(1), 100-103. https://doi.org/10.1021/cm031095h
Luongo, G., Di Bartolomeo, A., Giubileo, F., Chavarin, C. A., & Wenger, C. (2018). Electronic properties of graphene/p-silicon Schottky junction. Journal of Physics D: Applied Physics, 51(25). https://doi.org/10.1088/1361-6463/aac562
Lv, L., Hui, B., Zhang, X., Zou, Y., & Yang, D. (2023). Lamellar agarose/graphene oxide gel polymer electrolyte network for all-solid-state supercapacitor. Chemical Engineering Journal, 452, 139443. https://doi.org/10.1016/J.CEJ.2022.139443
Mahala, P., Patel, M., Gupta, N., Kim, J., & Lee, B. H. (2018). Schottky junction interfacial properties at high temperature: A case of AgNWs embedded metal oxide/p-Si. Physica B: Condensed Matter, 537, 228-235. https://doi.org/10.1016/j.physb.2018.02.010
Missoum, I., Ocak, Y. S., Benhaliliba, M., Benouis, C. E., & Chaker, A. (2016). Microelectronic properties of organic Schottky diodes based on MgPc for solar cell applications. Synthetic Metals, 214, 76-81. https://doi.org/10.1016/j.synthmet.2016.01.004
Muazim, K., & Hussain, Z. (2017). Graphene oxide - A platform towards theranostics. Materials Science and Engineering C, 76, 1274-1288. https://doi.org/10.1016/j.msec.2017.02.121
Nataraj, S. K., Yang, K. S., & Aminabhavi, T. M. (2012). Polyacrylonitrile-based nanofibers - A state-of-the-art review. Progress in Polymer Science (Oxford), 37(3), 487-513. https://doi.org/10.1016/j.progpolymsci.2011.07.001
Nawar, A. M., Abd-Elsalam, M., El-Mahalawy, A. M., & El-Nahass, M. M. (2020). Analyzed electrical performance and induced interface passivation of fabricated Al/NTCDA/p-Si MIS–Schottky heterojunction. Applied Physics A: Materials Science and Processing, 126, 113. https://doi.org/10.1007/s00339-020-3289-y
Norde, H. (1979). A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50(7), 5052-5053. https://doi.org/10.1063/1.325607
Okutan, M., Basaran, E., & Yakuphanoglu, F. (2005). Electronic and interface state density distribution properties of Ag/p-Si Schottky diode. Applied Surface Science, 252(5), 1966-1973. https://doi.org/10.1016/j.apsusc.2005.03.155
Rhoderick, E. H., & Williams, R. H. (1988). Metal-semiconductor contacts. Clarendon Press.
Şahin, M. F., Taşcı, E., Emrullahoğlu, M., Gökce, H., Tuğluoğlu, N., & Eymur, S. (2021). Electrical, photodiode, and DFT studies of newly synthesized π-conjugated BODIPY dye-based Au/BOD-Dim/n-Si device. Physica B: Condensed Matter, 614, 413029. https://doi.org/10.1016/j.physb.2021.413029
Saloma, E., Alcántara, S., Hernández-Como, N., Villanueva-Cab, J., Chavez, M., Pérez-Luna, G., & Alvarado, J. (2020). Photoelectric effect on an Al/SiO2/p-Si Schottky diode structure. Materials Research Express, 7(10), 105902. https://doi.org/10.1088/2053-1591/abbc40
Saufi, S. M., & Ismail, A. F. (2002). Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Songklanakarin Journal of Science and Technology, 24, 843-854.
Sevgili, Ö., Orak, İ., & Tiras, K. S. (2022). The examination of the electrical properties of Al/Mg2Si/p-Si Schottky diodes with an ecofriendly interfacial layer depending on temperature and frequency. Physica E: Low-Dimensional Systems and Nanostructures, 144, 115380. https://doi.org/10.1016/j.physe.2022.115380
Strimaitis, J., Danquah, S. A., Denize, C. F., Pradhan, S. K., & Bahoura, M. (2022). The effects of graphene oxide and reduced graphene oxide conductive additives on activated carbon supercapacitors. Processes, 10(11), 2190. https://doi.org/10.3390/pr10112190
Suk, J. W., Piner, R. D., An, J., & Ruoff, R. S. (2010). Mechanical properties of monolayer graphene oxide. ACS Nano, 4(11), 6557-6564. https://doi.org/10.1021/NN101781V
Sun, J., Oh, S., Choi, Y., Seo, S., Oh, M. J., Lee, M., Lee, W. B., Yoo, P. J., Cho, J. H., & Park, J. H. (2018). Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Advanced Functional Materials, 28(47), 1-9. https://doi.org/10.1002/adfm.201804397
Tatar, B., Bulgurcuoǧlu, A. E., Gökdemir, P., Aydoǧan, P., Yilmazer, D., Özdemir, O., & Kutlu, K. (2009). Electrical and photovoltaic properties of Cr/Si Schottky diodes. International Journal of Hydrogen Energy, 34(12), 5208-5212. https://doi.org/10.1016/J.IJHYDENE.2008.10.040
Tezcan, A. O., Eymur, S., Taşcı, E., Emrullahoğlu, M., & Tuğluoğlu, N. (2021). Investigation of electrical and photovoltaic properties of Au/n-Si Schottky diode with BOD-Z-EN interlayer. Journal of Materials Science: Materials in Electronics, 32(9), 12513-12520. https://doi.org/10.1007/s10854-021-05886-7
Tian, J., Wu, S., Yin, X., & Wu, W. (2019). Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Applied Surface Science, 496, 143696. https://doi.org/10.1016/J.APSUSC.2019.143696
Vacchi, I. A., Ménard-Moyon, C., & Bianco, A. (2017). Chemical functionalization of graphene family members. Physical Sciences Reviews, 2(1), 1-18. https://doi.org/10.1515/psr-2016-0103
Wang, W. S., Ho, C., & Chuang, T. M. (1998). High-performance IR detectors fabricated by PtSi on p-Si substrate. Infrared Detectors and Focal Plane Arrays V, 3379, 333. https://doi.org/10.1117/12.317600
Yıldırım, M., Kocyigit, A., Torlak, Y., Yenel, E., Hussaini, A. A., & Kuş, M. (2022). Electrical behaviors of the Co- and Ni-based POMs interlayered Schottky photodetector devices. Advanced Materials Interfaces, 9(18), 1-10. https://doi.org/10.1002/admi.202102304
Yuksel, O. F., Tuǧluoǧlu, N., Gulveren, B., Şafak, H., & Kuş, M. (2013). Electrical properties of Au/perylene-monoimide/p-Si Schottky diode. Journal of Alloys and Compounds, 577, 30-36. https://doi.org/10.1016/j.jallcom.2013.04.157
Zhang, D., Fu, C., Xu, J., Zhao, C., Gao, J., Liu, Y., Li, M., Li, J., Wang, W., Chen, D., Ye, T., Wu, D., & Luo, J. (2021). NiSi/p+-Si(n+-Si)/n-Si(p-Si) diodes with dopant segregation (DS): p-n or Schottky junctions? IEEE Transactions on Electron Devices, 68(6), 2886-2891. https://doi.org/10.1109/TED.2021.3075199