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Abstract 

Forest ecosystems are one of  the most important systems in capturing atmospheric carbon dioxide (CO2) and play an essential 

role in mitigating climate change. Forest ecosystems provide biodiversity, soil conservation, recreation areas, wildlife habitat, 

nutrient cycling, carbon storage and oxygen production. According to the Climate Change Framework Convention, 

determining and reporting the amount of carbon accumulation in forest ecosystem is of great importance. Different methods 

such as allometric equations, carbon expansion factor and remote sensing methods are used to determine aboveground carbon 

(AGC) storage. Especially with the developing technology, remote sensing techniques are used intensively to determine AGC 

storage. Normalized Difference Vegetation Index (NDVI) are commonly used, especially in determining the amount of AGC 

storage. The aim of this study is to estimate AGC storage according to different methods and to investigate whether there are 

statistical differences in AGC storage estimation of these approaches. The research was carried out in pure Calabrian pine 

(Pinus brutia Ten.) stands in the Burmahanyayla planning unit in Antalya province in the Mediterranean region of Türkiye. 

Within the scope of the study, the amount of AGC storage was calculated by using the inventory study conducted in 2022 and 

the Landsat 9 satellite data. A paired sample t-test was used to statistically examine the difference in the quantity of AGC 

storage based on inventory data and remote sensing data using SPSS 23.0. The results reveal that there was no statistically 

significant difference in the AGC storage values between the two approaches in all sample plots. 
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1. Introduction 

With the economic, ecological and socio-cultural changes 

in the world, carbon dioxide (CO2) emissions are also 

increasing. CO2 emissions are especially affected by the 

increasing population, industrialization, and the use of 

fossil fuels. One of the most dangerous greenhouse gases 

is CO2 (Lal, 2008). Global climate change is a reality that 

we face as a result of increasing carbon dioxide emissions. 

The most effective fight against global climate change is 

to reduce greenhouse gas emissions and increase the 

amount of carbon held in the atmosphere (Sakici et al., 

2018). Forests are one of the most important system in 

reducing carbon dioxide emissions in the atmosphere and 

creating car  bon pools (Çepel, 2003). 82% of the carbon in 

the terrestrial ecosystem is stored in forest ecosystems 

(Cusack et al., 2014; Kauranne et al., 2017). In addition, 

80% of aboveground carbon and 40% of underground 

carbon are stored in forest ecosystems (Goodale et al., 

2002; Turgut & Günlü, 2022). Therefore, determining the 

amount of carbon storage in forests has an essential part of 

the global carbon cycle for greenhouse gas emissions. The 

amount of carbon stored in the forests of Türkiye is 

obtained from forest management plans. 

The amount of biomass and carbon storage is calculated 

with the help of allometric equations and biomass 

expansion factors (BEF) (Wharton & Griffith, 1993; 

Sivrikaya et al., 2007; Sivrikaya & Işık, 2022). The 

variables related to these methods are inventory data 
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(Sivrikaya et al., 2013; Sakici et al., 2018; Sağlam et al., 

2020; Güner et al., 2022) and remote sensing data (Günlü 

et al., 2014; Chen et al., 2018; Anand et al., 2020; Günlü 

& Ercanlı, 2020; Keleş et al., 2021; Perry et al., 2022; 

Turgut & Günlü, 2022; Bulut et al., 2022). In order to 

determine the amount of carbon stored in the forest 

ecosystem with inventory data, first of all, biomass is 

determined (Sivrikaya & Bozali, 2012). This method is 

expensive, labor-intensive and time-consuming. However, 

with remote sensing data, the amount of carbon can be 

determined with less cost and labor in larger areas. Band 

values (Gou et al., 2022; Wallis et al., 2023), vegetation 

indices (Li et al., 2018; Chen et al., 2018; Nurda et al., 

2020; Wang et al., 2020; Gardin et al., 2021; Perry et al., 

2022; Dvorakova et al., 2023) and texture values (Chen et 

al., 2018; Günlü et al., 2021; Keleş et al., 2022) are used to 

determine the amount of carbon by remote sensing. NDVI 

(Normalized Difference Vegetation Index) data obtained 

from satellite images such as Landsat, Sentinel-1, Sentinel-

2 and Lidar are widely used to reveal the relationships 

between the amount of carbon storage (Myeong et al., 

2006; Baniya et al., 2018; Xiao et al.,2019; Dvorakova et 

al., 2020; Wang et al., 2021; Keleş et al., 2021; Dvorakova 

et al., 2023). 

In this study, it is aimed to determine the aboveground 

carbon (AGC) storage with the NDVI data acquired from 

the Landsat 9 satellite image, as an alternative to 

expensive, labor-intensive applications. In addition, the 

amount of AGC storage was determined by using the forest 

inventory data of the study area using allometric equation. 

The relationships between AGC storage estimated 

according to both forest inventory and remote sensing data 

were investigated using regression analysis.  

2. Material and Methods 

2.1. Study area 

The Burmahanyayla planning unit (PU) was selected as a 

case study area, located in Antalya Regional Directorate of 

Forestry in Türkiye. The study area is situated in the south 

of Türkiye, Mediterranean region, at 36° 49′–37° 26′ N and 

31° 08′–31° 24′ E (Figure 1). The Burmahanyayla PU 

covers a total area of 21364.9 hectares, of which 9014.9 

hectares are productive forest and 2990.4 hectares are 

degraded forest (FMP, 2022). Calabrian pine (Pinus brutia 

Ten.), Crimean pine (Pinus nigra J.F.Arnold), Cedar 

(Cedrus libani A. Rich.), and Juniper (Juniperus ssp.) are 

the main tree species in the study area. The research region 

is under zone Csa of the Köppen climate classification 

system, characterized by a hot summer. In this region, at 

least one month's average temperature is over 22 °C, the 

coldest month averages above 0 °C, and at least four 

months have average temperatures that are above 10 °C. 

The wettest month of the year has at least three times as 

much precipitation as the driest month of the year, which 

only receives 40 mm or less (Beck et al., 2018). 

2.2. Forest inventory data 

General Directorate of Forestry in Türkiye is largely 

responsible for creating forest management plans. In every 

ten or twenty years, forest management plans are updated. 

The initial stage of the planning procedure is the forest 

inventory, based on both field survey and remotely sensed 

data (satellite image classification or aerial picture 

interpretation). Türkiye's Forest Management Team 

(FMT) conducts forest inventories. Forest inventory study 

was carried out in 2022 in order to renew the forest 

management plans in the Burmahanyayla PU. Sample 

plots were created systematically at 300x300 meters 

intervals and a total of 228 sample plots were taken from 

pure Calabrian pine stands within the scope of the field 

study. Sample plots were collected in the shape of a circle 

and their dimensions were taken as 400 m2 (crown closure 

>70%), 600 m2 (crown closure >40-70) and 800 m2 (crown 

closure >11-40%). The GPS was used to find the locations 

of each sample plot. In each sample plot, the diameters of 

all trees with a diameter at breast height (dbh, cm) larger 

than 7.9 cm were measured. 

2.3. Data processing for Landsat satellite image 

The Landsat 9 satellite, which have the same orbit with the 

Landsat 8 satellite, was launched on September 27, 2021. 

Landsat 9 has a temporal resolution of 8 days and a 

radiometric resolution of 14 bits. Having more radiometric 

resolution than Landsat 8 will provide a better perception 

of ecosystems with complex structures such as forests. The 

Landsat 9 satellite image includes 11 spectral bands, 

including near-short wave infrared and thermal infrared 

spectral bands. Within the scope of the study, Landsat 9 

satellite image was downloaded free of charge from 

http://earthexplorer.usgs.gov in Level-1 format (Table 1). 

Red and Near-Infrared bands (Band 4 and Band 5) of the 

Landsat 9 satellite image were used in this study. The 

satellite image was geo-referenced with the root means 

square error (RMSE) less than one pixel to a Universal 

Transverse Mercator (UTM) coordinate system. The 

satellite image was subjected to some preprocessing such 

as geometric correction, atmospheric correction and 

calibration. It was clipped according to the boundaries of 

the study area and made ready for analysis. The GPS 

locations do, however contain positional inaccuracies, 

which typically average 4 m. As a result, it is almost 

impossible to find each sample plot and test point precisely 

in the middle of the 30 m grid of Landsat 9. Due of this, 

several studies used a window, such as a 3x3 pixel, to 

tackle the location problem (Labrecque et al. 2006; Turgut 

& Günlü, 2022). Reflectance values were averaged over 

the surrounding pixels using a window. In each example 

figure, the average of the NDVI values of nine pixels were 

calculated using a 3x3 window using ArcGIS 10.6 with 

Equation 1.

http://earthexplorer.usgs.gov/
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Figure 1. The case study area 

Table 1. The properties of Landsat 9 images used in the study 

Acquisition 

Date 

Cloud cover 

(%) 

Band Name Central wavelength 

(µm) 

Spatial resolution 

(m) 

17.07.2022 4.58 Band 1 Ultra blue 0.43 - 0.45 30 

Band 2 Blue 0.45 - 0.51 30 

Band 3 Green 0.53 - 0.59 30 

Band 4 Red 0.64 - 0.67 30 

Band 5 Near-Infrared 0.85 - 0.88 30 

Band 6 SWIR 1.57 - 1.65 30 

Band 7 SWIR 2.11 - 2.29 30 

Band 8 Panchromatic 0.50 - 0.68 15 

Band 9 Cirrus 1.36 - 1.38 30 

Band 10 TIRS 1 10.6 - 11.19 100 

Band 11 TIRS 2 11.5 - 12.51 100 
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𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (1) 

where NDVI is Normalized Vegetation Index, NIR is the 

near infrared wavelength of the spectrum (0.85 – 0.88 μm), 

and Red is the red region wavelength (0.64 – 0.67 μm). 

NDVI ranges from -1 to +1. As NDVI values approach +1 

value, green vegetation increases and an NDVI value close 

to 0 means that the area has openness or low vegetation. In 

the case of water, snow and cloudiness in the satellite 

image, the NDVI value is close to -1. 

2.4. Aboveground carbon storage estimation 

For each sample plot, the AGC storage of each tree was 

determined using the following Equation (2) derived by 

Kahriman et al. (2016) for pure Calabrian pine forests. The 

sum of the AGC storage of the trees in each sample plot 

was used to get the total AGC storage. The AGC storage 

per hectare was then calculated. 

ln 𝑌 = −3,1961 +
2,4596

𝑑𝑏ℎ
− 2,3796 ln

1

𝑑𝑏ℎ
 (2) 

where Y is aboveground carbon (AGC) storage (ton), dbh 

is the diameter at breast height (cm). 

First of all, correlation analysis was performed between 

AGC storage and NDVI values for each sample area using 

the Pearson correlation test. The simple linear regression 

analysis was performed to model the relationships between 

AGC storage and NDVI values acquired from Landsat 9 

satellite image. The Paired sample t-test was used to 

determine whether there was a statistically difference 

between the AGC storage obtained from inventory data 

and AGC storage obtained from the NDVI data. All 

analysis was carried out using SPSS version 23.0. 

3. Results and Discussion 

In the forest inventory, dbh was measured in 4912 trees in 

228 sample plots. It was between 8 cm and 100 cm, with 

an average of 26 cm. The NDVI values of the sample plots 

varied between 0.15 and 0.38. The mean NDVI value was 

calculated as 0.27. The AGC storage was calculated using 

carbon equation developed by Kahriman et al. (2016). The 

average AGC storage per hectare in the sample plots was 

54.62 tons ha-1, and the AGC storage varied between 3.58 

tons ha-1 and 141.66 tons ha-1. According to the AGC 

storage developed with NDVI values, the average AGC 

storage per hectare was estimated as 52.62 tons ha-1, 

minimum 9.47 tons ha-1, and the highest 176.03 tons ha-1 

(Table 2). 

The relationships between the NDVI values acquired from 

the Landsat 9 satellite image and the AGC storage 

estimated using inventory data for each sample plots were 

determined by correlation analysis. Correlation analysis 

showed a significant relationship between AGC storage 

and NDVI values (p<0.05). A high positive correlation was 

found between AGC storage and NDVI (r=0.779). These 

relationships between NDVI and AGC storage were 

modeled by regression analysis. Regression analysis 

showed exponential relationships between NDVI values 

and AGC storage, and it was determined that AGC storage 

increased with increasing NDVI value (Figure 2). The 

regression equation (Equation 3) was developed 

(R2=0.623) to estimate the AGC storage with NDVI. With 

this developed equation, the AGC storage was estimated 

with 62% accuracy. Exponential regression equation; 

AGC Storage (ton/ha) = 1.4317 * e (12.76333 * NDVI) (3) 

The statistical validity of the model developed for AGC 

storage using NDVI values obtained from Landsat 9 

satellite imagery was tested with a paired t-test at 95% 

confidence level. There was no statistically significant 

difference between AGC storage calculated according to 

both NDVI data and inventory data (p>0.05). As a result, 

the model developed to predict AGC storage with NDVI 

was found to be statistically appropriate. The NDVI value 

with the highest area (9918 ha) in the planning unit is 

between 0.20-0.30. NDVI value with the lowest area (287 

ha) is less than 0.10 (Table 3). The NDVI map of the case 

study area was given in Figure 3. 

According to the model developed using the NDVI values, 

the AGC storage amount per hectare of the planning unit 

was calculated. According to the results, the AGC storage 

per hectare of 62% of the planning unit (13272 ha) was less 

than 40 tons. The amount of AGC storage per hectare 

greater than 120 tons is only 697 ha (3% of the study area) 

(Table 4). This shows that there were more young stands 

in the study area. The AGC storage map of the model 

developed with NDVI values was given in Figure 4. 

 

 

Table 2. Descriptive statistics of the sample plots 

 
dbh (cm) NDVI 

AGC storage using 

inventory data (tons ha-1) 

AGC storage using 

NDVI (tons ha-1) 

Minimum 8 0.15 3.58 9.47 

Maximum 100 0.38 141.66 176.03 

Mean 26 0.27 54.62 52.62 

Standard Deviation 14.27 0.04 26.97 26.67 

Variance 203.624 0.001 727.28 711.218 
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Figure 2. Relationship between NDVI values and AGC storage 

Table 3. Distribution of NDVI value in the case study area 

NDVI value Area (ha) Percentage (%) 

<0.10 286.89 1.34 

0.10 – 0.20 7445.38 34.85 

0.20 – 0.30 9918.14 46.42 

>0.30 3714.49 17.39 

Total 21364.90 100.00 

 

Table 4. Distribution of AGC storage in the study area 

AGC Storage (ton) Area (ha) Percentage (%) 

<40 13272.38 62.12 

40 – 80 5769.68 27.01 

80 – 120 1625.56 7.61 

>120 697.28 3.26 

Total 21364.90 100.00 

 

Figure 3. NDVI map of the case study area 
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Figure 4. AGC storage map obtained with the model developed using NDVI in the case study area 

Pungpa et al. (2023) used Landsat 5 TM and Landsat 9 OLI 

satellite imagery to estimate carbon storage and biomass. 

NDVI, SAVI, GNDVI and EXG indices were calculated 

from satellite images. The R2 values of all models 

developed were found to be very close to zero (0.01-0.05). 

Among these models, the R2 value of the model developed 

with NDVI values was found to be 0.05. Jiang et al. (2022) 

estimated carbon storage using Landsat 8 and Landsat 9 

satellite imageries. Coefficients of models (R2) were found 

to be 0.88 and 0.87, respectively, in the estimation of 

carbon storage. Myeong et al. (2004) developed a model 

with NDVI values obtained from Landsat ETM+ satellite 

imagery for the estimation of carbon storage in urban 

forests. This study showed that NDVI values can be used 

to estimate carbon stock (R2=0.67). Situmorang et al. 

(2016) used vegetation indices to estimate carbon storage 

using NDVI and EVI, NDVI and EVI values were gathered 

from Landsat 8 OLI satellite image and models were 

developed to predict carbon storage using regression 

analysis. The coefficient (R2) of the model developed with 

EVI was found to be 0.830, and the coefficient of the 

model developed with NDVI (R2) was 0.728. Dos Reis et 

al. (2018) and Berra et al. (2012) tried to estimate the stand 

volume with the NDVI values obtained from the Landsat 

satellite image. In these studies, a significant correlation 

was found between the NDVI value and the stand volume 

(r=0.49 and r=0.61, respectively). Turgut and Günlü 

(2022) obtained reflectance, vegetation indices and texture 

values from Landsat 8 OLI satellite image to estimate 

aboveground biomass (AGB). The models were developed 

to predict AGB with multiple regression analysis (MLR). 

The adjusted coefficient of the models (Ra
2) developed 

with reflectance values, vegetation indices and texture 

values were found to be 0.445, 0.387 and 0.552, 

respectively. Ou et al. (2019) found a 91% correlation 

between the reflectance and vegetation indices values 

obtained from the Landsat 8 OLI satellite image and the 

AGB. Imran and Ahmed (2018) developed models to 

predict AGB using vegetation indices gathered from 

Landsat 8 OLI satellite imagery. One model was 

developed using SAVI (R2=0.68) and other model 

developed using NDVI, DVI, ARVI, PVI and SAVI values 

together (R2=0.63). Günlü and Ercanlı (2020) used ALOS 

PALSAR satellite imagery to estimate carbon storage in 

AGB in Göldağ planning unit. HH and HV polarizations, 

texture values and topographic information were obtained 

from ALOS PALSAR satellite image. Artificial neural 

networks (ANN) and MLR techniques were used. The HH 

and HV backscattering values and the model indication 

coefficients (R2) with ANN were found to be 0.52 and 

0.44, respectively, and 0.38, and 0.36 with the MLR. Keleş 

et al. (2021) estimated AGB by applying MLR, deep 

learning (DLM) and support vector machine (SVM) 

methods using remote sensing data obtained from 
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Sentinel-1 and Sentinel-2 satellite images in Scotch pine 

stands in Hızardere planning unit. The backscattering and 

polarization rates were obtained from Sentinel-1 satellite 

image, and reflectance and vegetation indices values were 

obtained from Sentinel-2. The fitted index (FI) of the 

model developed in the estimation of AGB with vegetation 

indices was found to be 0.531. Tavasoli et al. (2019) 

developed a model with SVM for the estimation of surface 

carbon stock with Sentinel-1, Sentinel-2, and ALOS 

PALSAR satellite images. The coefficients of the models 

developed with the help of ALOS PALSAR, Sentinel-1 

and Sentinel-2 satellite images were determined as (R2) 

0.50, 0.60, and 0.51, respectively. Bolat (2019) used 

Göktürk-2 satellite imagery to estimate AGB and carbon 

stock in a Calabrian pine plantation stands. The success 

coefficient (R2) of the model developed for biomass 

estimation with Göktürk-2 satellite imagery was found to 

be 0.50, while the coefficient (R2) of the model developed 

for surface carbon stock was found to be 0.52. Askar et al. 

(2018) developed a model to predict AGB with the 

vegetation indices obtained from the Sentinel-2 (R2=0.78). 

EVI and NDI values were included in this developed 

model. As a result of the literature review, our results were 

found to be compatible with the literature. 

4. Conclusion 

In this study, the relationship between NDVI acquired 

from Landsat 9 satellite image and AGC storage was 

calculated by regression analysis. A high positive 

correlation was found between NDVI values and AGC 

storage. The model developed for AGC storage prediction 

was moderate descriptive. The reasons for the moderate 

success of the developed model may be due to the low 

spatial resolution of the Landsat 9, the stand structure in 

the study area, topographic conditions and modeling 

technique. Therefore, using high-resolution satellite 

images with different modeling techniques (random forest, 

artificial neural networks, support vector machine, 

multivariate adaptive regression splines) for AGC 

prediction can increase model success. This study shows 

that the developed regression model can be useful for 

predicting AGC storage in pure Calabrian pine forests with 

similar forest ecosystems as our study area. 
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