Comparison of traditional regression models and artificial neural network models for height-diameter modeling in uneven-aged fir stands
DOI:
https://doi.org/10.29329/JofBS.2021.348.01Keywords:
Linear models, Nonlinear models, Artificial Neural Network models (ANN), Height-diameter models, Feed-forward backpropagation ANNAbstract
Forests have been constantly growing with their dynamic structure. In order for this dynamic structure must be managed based on sustainable perspective. Diameter, height, age, stand structure, etc. parameters are used in the inventory stage of the planning. The easiest to measure among these parameters is the diameter. Therefore, the developed models are usually aimed at reaching other forest parameters from the diameter. In this article, 9 different height-diameter models were fitted using regression models, and feed-forward backpropagation artificial neural network model methods for uneven-aged fir (Abies nordmanniana subsp. equi-trojani) stands in Kökez, Bolu region of Turkey. The models compared based on adjusted R2, bias, absolute bias, and root mean square error (RMSE). It was observed that the best result was obtained from the artificial neural network model, and the worst result was obtained from the power model.
References
Akaike, H. (1969). Fitting Autoregressive Models for Prediction. Annals of the Institute of Statistical Mathematics, 21(1), 243-247. https://doi.org/10.1007/BF02532251
Atar, D. (2016). Simulating the transition from even-aged longleaf plantations to old growth savannas with harvest management using a coupled multiple model framework [Master's thesis, University of Florida].
Carus, S. (1998). Aynıyaşlı doğu kayını (Fagus orientalis Lipsky.) ormanlarında artım ve büyüme [PhD dissertation, Istanbul University]. (in Turkish)
Carus, S., & Çatal, Y. (2017). Ağlasun Yöresi Kızılçam (Pinus brutia Ten.) Ağaçlandırmaları İçin Bazı Çap-Boy Modellerinin Karşılaştırılması. Turkish Journal of Forestry, 18(2), 94-101. (in Turkish) https://doi.org/10.18182/tjf.289330
Curtis, R. O. (1967). Height-Diameter and Height-Diameter-Age Equations for Second-Growth Douglas-Fir. Forest Science, 13(4), 365–375. https://doi.org/10.1093/forestscience/13.4.365
Çatal, Y. (2009). Batı Akdeniz Bölgesi kızılçam (Pinus brutia Ten.) meşcerelerinde artım ve büyüme [PhD dissertation, Süleyman Demirel University]. (in Turkish)
Çatal, Y. (2012). Göller Yöresinde Yalancı Akasya, Anadolu Karaçamı ve Toros Sediri Ağaç Türleri İçin Çap-Boy Modeli. SDÜ Orman Fakültesi Dergisi, 13(2), 92-96. (in Turkish)
Diamantopoulou, M. J. (2006). Tree-Bole Volume Estimation on Standing Pine Trees Using Cascade Correlation Artificial Neural Network Models. Agricultural Engineering International: CIGR Journal, 8, 1-6.
Diamantopoulou, M. J. (2012). Assessing A Reliable Modeling Approach of Features of Trees through Neural Network Models for Sustainable Forests. Sustainable Computing: Informatics and Systems, 2(4), 190-197. http://dx.doi.org/10.1016/j.suscom.2012.10.002
Eler, Ü. (2003). Dendrometri. Süleyman Demirel Üniversitesi Yayınevi. (in Turkish)
Ercanli, İ., & Bolat, F. (2017). Diameter distribution modelling based on artificial neural networks for Kunduz forests [Oral presentation]. International Symposium on New Horizons in Forestry, Isparta, Turkey.
GDF (2020). Orman varlığı. General Directorate of Forestry Publications. (in Turkish)
Huxley, A. (1932). Problems of relative growth. The Dial Press.
Keleş, S., & Bulut, S. (2014). Aynıyaşlı ve değişikyaşlı orman formlarının orman ekosistem fonksiyonları kapsamında karşılaştırılması [Oral presentation]. II. Ulusal Akdeniz Orman ve Çevre Sempozyumu, Isparta, Turkey. (in Turkish)
Korf, V. (1939). Pfispevek k matematicke definici vzrustoveho zakona lesnich porostii. Lesnicka Prace, 18, 339-356.
Li, Y. X., & Jiang, L. C. (2010). Application of ANN Algorithm in Tree Height Modeling. Applied Mechanics and Materials, 20, 756-761. https://doi.org/10.4028/www.scientific.net/AMM.20-23.756
MATLAB R2021a, The MathWorks, Inc., Natick, Massachusetts, United States.
Meyer, H. A. (1940). A Mathematical Expression for Height Curves. Journal of Forestry, 38(5), 415-420.
Ozkal, M. K. (2017). Models of forest inventory for Istanbul forest using airborne lidar and spaceborne imagery [Master's thesis, Michigan Technological University].
Özçelik, R., Diamantopoulou, M. J., Brooks, J. R., & Wiant Jr., H. V. (2010). Estimating Tree Bole Volume Using Artificial Neural Network Models for Four Species in Turkey. Journal of Environmental Management, 91(3), 742-753. https://doi.org/10.1016/ j.jenvman.2009.10.002
Özçelik, R., Diamantopoulou, M. J., Crecente-Campo, F., & Eler, U. (2013). Estimating Crimean Juniper Tree Height Using Nonlinear Regression and Artificial Neural Network Models. Forest Ecology and Management, 306, 52-60. https://doi.org/10.1016/j. foreco.2013.06.009
Özçelik, R., & Çapar, C. (2014). Antalya Yöresi Doğal Kızılçam Meşcereleri Için Genelleştirilmiş Çap-Boy Modellerinin Geliştirilmesi. SDÜ Orman Fakültesi Dergisi, 15(1), 44-52. (in Turkish) https://doi.org/10.18182/tjf.01926
Poudel, K. P., & Cao, Q. V. (2013). Evaluation of Methods to Predict Weibull Parameters for Characterizing Diameter Distributions. Forest Science, 59(2), 243-252. https://doi.org/10.5849/forsci.12-001
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Sakici, O. E., & Ozdemir, G. (2018). Stem Taper Estimations with Artificial Neural Networks for Mixed Oriental Beech and Kazdaği Fir Stands in Karabük Region, Turkey. Cerne, 24(4), 439-451. https://doi.org/10.1590/01047760201824042572
Schikowski, A. B., Corte, A. P., Ruza, M. S., Sanquetta, C. R., & Montano, R. A. (2018). Modeling of Stem Form and Volume through Machine Learning. Anais da Academia Brasileira de Ciências, 90(4), 3389-3401.
Schumacher, F. X. (1939). A new growth curve and its application to timber yield studies. Journal of Forestry, 37(10), 819-820.
Seki, M. (2020). Kastamonu Orman Bölge Müdürlüğü karaçam (Pinus nigra J.F. Arnold) meşcerelerine ilişkin ekolojik tabanlı büyüme modelleri [PhD dissertation, Kastamonu University]. (in Turkish)
Socha, J., Netzel, P., & Cywicka, D. (2020). Stem Taper Approximation by Artificial Neural Network and A Regression Set Models. Forests, 11(1), 79. https://doi.org/10.3390/f11010079
Temesgen, H., Hann, D. W., & Monleon, V. J. (2007). Regional Height-Diameter Equations for Major Tree Species of Southwest Oregon. Western Journal of Applied Forestry, 22(3), 213-219. https://doi.org/10.1093/wjaf/22.3.213
Thanh, T. N., Tien, T. D., & Shen, H. L. (2019). Height-Diameter Relationship for Pinus koraiensis in Mengjiagang Forest Farm of Northeast China Using Nonlinear Regressions and Artificial Neural Network Models. Journal of Forest Science, 65(4), 134-143. https://doi.org/10.17221/5/2019-JFS
Wykoff, W., Crookston, N., & Stage, A. (1982). User’s guide to the stand prognosis model. Ogden.