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A B S T R A C T  

Increasing urbanization in the world in recent years has resulted in the replacement of areas covered 

with plants by buildings. Because of this change, urban areas are warmer than rural areas (urban heat 

island). In this investigation, the urban heat island (UHI) effect, the methods of combating this effect 

and notably the role of urban trees are exhaustively elaborated by considering the relevant literature. 

In addition, suggestions were made on which species should be selected and how tree species should 

be positioned to reduce UHI effect. There are solid evidences that trees, urban green spaces and wider 

green infrastructure can bring significant reductions in urban temperatures. Urban planners and 

decision makers can help combat UHI and increase urban resilience to the effects of climate change, 

primarily by planting the urban environment with extensive shade-providing species and harnessing 

the most of the opportunities afforded by restoration activities. Trees and other vegetation can cool 

the surrounding air by evapotranspiration thanks to both transpiration from plant leaves and 

evaporation of water from irrigated soil. The tree canopy can considerably improve outdoor thermal 

comfort by preventing a pedestrian from being exposed to solar radiation, and also by protecting 

floors and building coverings from UHI effect. Furthermore, if a roadside afforestation is to be 

established to combat UHI effect, a proper plan based on the character of the road will be beneficial 

in terms of achieving the determined goals. Eventually, the adaptation to UHI should be achieved to 

plan short-, medium- and long-term changes. 
 

Please cite this paper as follows: 

Yaşlı, R., Yücedağ, C., Ayan, S., & Simovski, B. (2023). The role of urban trees in reducing land surface temperature. SilvaWorld, 

2(1), 36-49. https://doi.org/10.29329/silva.2023.518.05 
 

1. Introduction 

Since the industrial revolution, the population of cities, 

developing economically and technologically, has gradually 

increased and thus expanded (Begen, 2020). It has been 

envisaged that the world population will be about 8 and 10 

billion and urbanization will be 60.4% and 68.4% in 2030 and 

2050, respectively (United Nations, 2018). These increases will 

lead to urban expansion notably in developing countries, and 

tropical and subtropical regions (Oke et al., 2017). 
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Urban sprawl can be seen since ecological factors such as 

sunshine status, daylight, prevailing wind direction, air 

currents, green areas, groundwater levels and geophysical 

characteristics are ruled out in the urbanization process 

(Kırzıoğlu et al., 1999). Changes such as urban sprawl, 

industrialization and deforestation resulted in various 

environmental problems (Kaplan et al., 2018; Ersoy 

Tonyaloğlu, 2019). 
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With urbanization, the number of urban building has 

increased and lands with vegetation are covered with buildings, 

roads and other utilities. Hence, lands that were once permeable 

and moist often become impervious and dry (EPA, 2012). This 

situation affects the aerodynamic properties of the earth's 

surface, and have significant effects on the local and regional 

climate by changing the land-air exchange and meteorological 

conditions (Harman, 2003; Zhang et al., 2019). One of these 

effects is the fact that urban areas are exposed to higher 

temperatures than rural areas, called as the urban heat island 

(EPA, 2012).  

The purpose of this review study is to explain urban heat 

island (UHI) effect elaborately, to reveal the methods of 

combating UHI in urban areas within the framework of the 

discipline of landscape architecture, and especially the role of 

urban trees in the fight against UHI based on the related 

national and international literature. In addition, it is aimed to 

present suggestions on which tree species will select against 

UHI and how they should be positioned in landscape designs. 

1.1. Urban Heat Island 

Other facilities such as buildings, roads and infrastructure 

increased by urbanization absorb and re-radiate more solar heat 

than natural land covers such as forests and water bodies. In 

addition, urban areas have less moisture content than rural areas 

due to impermeable surfaces that make urban areas dry (Figure 

1). Consequently, the natural cooling processes such as 

evaporation and evapotranspiration occur restricted in urban 

areas and cannot control the increasing of urban temperature 

(Imran et al., 2021). Urban areas, where buildings are 

concentrated and green areas are limited, happen to islands with 

higher temperatures compared to the surrounding rural areas. 

This is defined as the urban heat island (EPA, 2021; Orhan, 

2021). 

 

Figure 1. An illustration of rural (pervious) and urban (impervious) areas (Imran et al., 2021). 

 

The urban heat island was firstly explored and described by 

Luke Howard in the 1810s (Howard, 2012). The study of the 

urban atmosphere continued throughout the nineteenth century. 

Between the 1920s and 1940s, researchers in local climatology 

or micrometeorology in Europe, Mexico, India, Japan, and the 

United States pursued new methods of understanding this 

problem. In 1929, Albert Peppler coined the term “Staedtischen 
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Waermeinsel” as the first word equivalent to the urban heat 

island (Stewart, 2019). 

The urban heat island has been the focus of many scientific 

studies since 1990 (Masson et al., 2020). 

Some studies have suggested that UHI has a non-significant 

effect on global temperature averages due to urban areas that 

make up only 1% of the earth's surface (Hansen et al., 2010; 

Hartmann et al., 2013; Wang et al., 2015; Wang & Yan, 2016). 

However, some studies have reported that UHI has a more 

negative impact on climate change than greenhouse gas in 

urban areas (Stone, 2007; Fujibe, 2009; McCarthy et al., 2010; 

Yan et al., 2016; Wang & Yan, 2016; Kachenchart et al., 2021). 

1.2. Urban Heat Island Effect 

The urban heat island effect is examined at micro 

(subsurface and surface), local (urban canopy layer) and mezzo 

(urban boundary layer) scales owing to urban biophysical 

nature and the multi-layered structure of the atmosphere (Erell 

et al., 2011; Roth, 2013). The urban temperature extends to the 

urban boundary layer through the entrainments of sensible heat 

clouds from micro-scale areas (bottom-up) and warmer air from 

local scale areas (top-down) and the boundary layer forms UHI 

(Figure 2). As examined underground and surface heat islands 

at the micro scale (1-100s m), it is observed that rainwater 

runoff affects the temperature, groundwater properties, the 

health of aquatic ecosystems, and carbon exchange between 

soil and atmosphere (Roth, 2013).  

Researches exploring the canopy layer of the atmosphere 

under buildings and trees at a local scale (1≤10 km) (Figure 2) 

have reported the existence of cool islands due to shading from 

tall buildings during the day (Chow & Roth, 2006; Roth, 2013).  

Besides, UHI at the local scale is affected by solar radiation, 

so the largest temperature differences are most evident during 

the day (Roth et al., 1989) especially in open areas exposed to 

direct sunlight. Norton et al. (2013) also stated that solar 

radiation is one of the key factors in determining human thermal 

comfort under hot conditions. UHI at the local scale has far-

reaching effects on building energy use, water use for irrigation, 

thermal circulation, air quality and urban ecology, as well as 

affecting the thermal comfort of urban residents (Roth, 2013). 

The urban boundary layer covers the area above urban 

canopy layer that is affected by the urban surface below (Voogt 

& Oke, 2003). A cross-section from the air above the city shows 

a simple dome (in calm conditions) or a cloud of warm air 

directed downwind of the city (in windy conditions) and usually 

extends for tens of kilometres (Figure 2). UHI at the mezzo 

scale exhibits a flow from local to medium scale and its density 

is less (∼1.5-2 °C) compared to local scale. In the urban 

boundary layer at the mezzo scale, it was reported only weak 

heat islands decreasing as moved further away from the urban 

area. In addition, UHI in the boundary layer can potentially 

affect local circulation, regional climate patterns, precipitation, 

thunderstorm activity downwind and plant cultivating season 

(Kotharkar et al., 2018).

 

Figure 2. Climatic scales and vertical layers in urban areas. PBL: planetary boundary layer, UBL: urban boundary layer, UCL: urban 

canopy layer; (a) Mezzo scale, (b) local scale, and (c) micro scale - grey parts (Oke, 2006). 
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The negative effects of UHI were widely accepted, and 

these effects cause to the increase in cooling requirements, 

energy consumption, water demand, and disease and mortality 

from heat stress and the decrease in air quality (Bhargava et al., 

2017; Heaviside et al., 2017; Balany et al., 2020; Peng et al., 

2020; Yao et al., 2022). 

2. Methods of Combating Urban Heat Island 

Although urban climatologists have studied urban heat 

islands for decades, public interest and concerns regarding the 

subject have recently begun to emerge. This interest in heat-

related environmental and health issues has contributed to the 

development of heat island combating methods, particularly 

trees and vegetation, green roofs and cool roofs. 

Urban heat island effects need to be combated notably in 

line with climate change. Besides building designs, urban 

planning and strategic use of water features, vegetation and 

green areas within the landscape should be considered. The 

urban climate can be effectively changed by varying the 

amounts of heat energy absorbed, stored and transferred and by 

adopting cooling strategies. The methods of combating urban 

heat island were discussed in the following subheadings. 

2.1. Vegetation 

Most studies have been found to be consistent about the 

ability of trees to lower temperatures and improve human 

thermal comfort. Shade areas generated by trees reduce direct 

solar radiation. Through evapotranspiration, trees can give 

water vapor to the atmosphere, increase the relative humidity, 

lower the temperature and eventually improve thermal comfort 

conditions (Doick & Hutchings, 2013). It was reported that the 

increase in the number of trees decreased the air temperature by 

around 0.2 °C (Jamei et al., 2014), 0.35-0.6 °C (Tsoka, 2017), 

0.3-1.5 °C (Duarte et al., 2015), 1 °C (Skelhorn et al., 2014), 

1.49 °C (Salata et al., 2017), 1.87 °C (Herath et al., 2018), 2.27 

°C (Srivanit & Hokao, 2013). These results are in line with 

those from previous literature revealing that adding trees and 

fences to an urban area can reduce the peak ambient 

temperature by 0.2 to 5.0 °C (Santamouris et al., 2017; Soltani 

& Sharifi, 2017; Tsoka et al., 2018). 

2.2. Reflection 

The extent to which solar energy warms the urban area is 

associated with the surface albedo or reflection of radiation. 

Less reflection means more absorbed and stored energy to heat 

the local environment. A lower urban albedo (usually a rural 

albedo of 20-25% versus 15%) culminates relatively greater 

absorption than in the rural area (Doick & Hutchings, 2013). 

Some studies suggested that reflective surfaces can help reduce 

UHI and mitigate the microclimate within the city (Zhu & Mai, 

2019; Helletsgruber et al., 2020; Cheela et al., 2021). 

2.3. Evaporative Cooling and Evapotranspiration 

Conducted investigations have shown that the temperature 

difference (ΔT) between urban and rural areas increases in dry 

weather compared to humid weather (Fischer & Schar, 2010; 

Zhao et al., 2014; Amorim, 2020; Feinberg, 2021). Since 

impervious surfaces such as pavement, adjacent and bare 

building surfaces, etc. prevent evaporative cooling, solar 

absorption turns into sensible heat rather than latent heat (Qin, 

2020). As hot air traps more water vapor and creates a local 

greenhouse gas, UHI causes an increase in humidity on 

impermeable surfaces and thus a decrease in convection 

cooling. Many studies determined that evaporative pavements 

could be reduced by the use of roof and vertical gardens (Zhao 

et al, 2014; Kubilay et al., 2019; Manteghi & Mostofa, 2019; 

Qin, 2020). 

2.4. Shading 

Vegetation of surfaces with high evaporation rates and 

shading artificial materials, that especially have low albedo, are 

effective strategies to lower surface temperatures and reduce 

the effect of UHI (Gago et al., 2013; Rahman et al., 2020a; Park 

et al., 2021; Tan et al., 2021). Shading combats UHI in three 

complementary ways. First, it restricts energy storage and 

subsequent heating of the local environment by limiting solar 

penetration. Second, it reduces the direct energy absorption 

from the openings and the resulting internal greenhouse effect. 

Reducing the air conditioning demand saves energy and costs, 

and reduces the emission of waste heat energy. Third, shading 

protects people from direct sun exposure (Emmanuel, 2005; 

Doick & Hutchings, 2013). 

3. Spatial Scales of Cooling 

The importance of urban vegetation as a “natural capital” is 

indisputable and it is known to be important in reducing heat 

stress at the neighbourhood scale (Gunawardena et al., 2017; 

Willis & Petrokofsky, 2017). Besides, unpredictable climatic 

conditions adversely affect the efficiency of urban vegetation 

as heat reduction solution at a city-scale. Because urban-rural 

differences in evaporative cooling and evapotranspiration 

increase with precipitation, virtually the entire urban area needs 

to be replaced with green surfaces to dramatically decrease 

these differences under wet conditions. In addition, although 

vegetation reduces thermal comfort by increasing air humidity 

in hot tropical regions, it can significantly increase pedestrian 

comfort by providing shade (Manoli et al., 2019). 

The surface temperature in a green area can be 15–20 °C 

lower than that of the surrounding urban area, resulting in 2–8 

°C cooler temperatures and a diffuse cooling effect (Taha et al., 

1988; Saito et al., 1991). 
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A study (Monteiro et al., 2016) conducted on the cooling 

effect of green areas in cities showed that 3-5 hectares of green 

areas would provide about 70-120 m of cooling effect. Cai et 

al. (2018) focused on water bodies and reported that the cooling 

effect of water bodies was effective at a distance of less than 

500 m. The study (Hou & Estoque, 2020) carried out in the city 

of Hangzhou dwelt on the concept of minimum benefit scale in 

order to determine how far, how much green space or water 

body should be planned for the target UHI areas. In the same 

study, it was detected that afforestation and water bodies should 

be made at distances shorter than 120 m and 150 m to the target 

area, respectively, and that the cooling effect of the forest (more 

than 690 m) was considerably higher than the water bodies (less 

than 210 m). 

4. The Right Tree in the Right Place 

Although urban trees differ in humid and arid climates, they 

can reduce heat in urban areas and its negative effects on human 

health, energy consumption and urban infrastructure (Manoli et 

al., 2019; Wang et al., 2019). As the urban area and barren 

surfaces expand, the increase in land surface temperature 

adversely affects the living conditions of the urban population 

(Yelsiz & Yücedağ, 2022). In many studies investigating the 

climatic effects, the effects of different vegetation types (urban 

trees, urban forests, treeless green areas, etc.) on temperature 

have been attested (Li et al., 2015; Takács et al., 2016; 

Duveiller et al., 2018). According to Schwaab et al. (2021), it 

was confirmed that trees have a high potential to reduce urban 

heat in Europe (Figure 3).

 

Figure 3. Regional temperature differences (ΔT) during hot extremes between areas covered with 100% urban trees (UT) and with 

100% continuous urban fabric (UF). Each dot represents the temperature difference in a specific city. The number of cities for each 

country is indicated in brackets after the country name (Schwaab et al., 2021). 
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Urban environmental conditions can increase or decrease 

the temperature decline provided by trees (Winbourne et al., 

2020). For example, higher nutrient availability (Decina et al., 

2017), higher temperatures (Aykır, 2017) and higher irrigation 

levels (Reyes-Paecke et al., 2019) were regularly observed in 

urban areas compared to rural areas. These can increase 

transpiration and cooling (Melaas et al., 2016). On the other 

hand, high temperatures in cities can increase water stress 

(Meineke et al., 2016), insufficient soil volumes and soil 

compaction can limit root growth (Jim, 2019), and increased air 

pollution in cities can have many negative effects on trees. 

These factors, which may adversely affect the growth of urban 

trees and the cooling effect, should be considered in urban areas 

(Chen et al., 2015; Schwaab et al., 2021). 

4.1. Tree Selection 

There are two main factors leading the cooling property of 

trees (Rahman et al., 2020b). First, the canopy closure of trees 

provides shade and shields more than 90% of the shortwave 

radiation to which the surface is exposed (Massetti et al., 2019). 

A surface temperature difference of up to 40 °C was reported 

between asphalt surfaces under the dense canopy of trees and 

directly exposed to the sun (Armson et al., 2012). Another 

factor that allows trees to cool is to reduce the amount of 

available heat (sensible heat) by absorbing the energy (latent 

heat) around the trees with evapotranspiration. Therefore, air 

temperatures in the shade of trees can be significantly lower 

than in the shade of buildings (Charalampopoulos et al., 2013). 

Consequently, the shading and/or evapotranspiration capacities 

of the tree species selected in the combating UHI effect should 

be considered. 

Not all tree species have the same cooling effect (Scholz et 

al., 2018; Chen et al., 2019; Rahman et al., 2020b). The cooling 

provided by shade and evapotranspiration depends on many 

sub-factors such as size and temperature of leaf, structure, size 

and density of shade and water condition of the plant. As the 

leaf size increases, the variation between latent heat and 

sensible heat decreases. Therefore, trees with smaller leaf size 

have higher cooling rates. In case of low leaf density, more leaf 

surface is exposed to higher solar radiation throughout the 

entire plant, and thus resulting in higher air temperature and 

transpiration rate is not sufficient to cool the leaves 

(Manickathan et al., 2018). As the leaf temperature, that is, the 

stomatal resistance, increases, the plant performs less cooling, 

which is directly related to the water status of the plant (Urban 

et al., 2017). In addition, the health and vitality of the plant is 

critical to the constant supply of the cooling advantage. 

Therefore, temperature, drought, disease and pollution 

tolerance, availability of rooting medium and sensitivity to 

compression should be considered in the selection of tree 

species (Doick & Hutchings, 2013). 

Like all plants, if trees cannot quickly adapt to adverse 

conditions during extreme heat waves, heat tolerance is 

exceeded and the plant may suffer direct thermal damage or 

death (Drake et al., 2018). Drought tolerance includes 

mechanisms that limit the damage caused by prolonged drought 

and allow plants to maintain their metabolism (Courtois et al., 

2000; İlhan, 2016). Pathogens and pests are more likely to adapt 

to adverse environmental conditions (air pollution, lack of 

humidity, extreme temperatures, etc.) and survive due to their 

much shorter life span than trees. It should be ensured that the 

selected tree species gain resistance by various methods to have 

long-lived (Jactel et al., 2017; Iason et al., 2018; Pike et al., 

2021). Root media compatibility is critical to make a young tree 

long-lived, and in particular, when they inhabit urban green 

spaces (Shotaroska et. al., 2019). In dense urban environments, 

sufficient soil for growth, the existing rooting area, availability 

of moisture, oxygen and nutrient largely determine the size of 

a tree over its lifetime (Urban, 2008). 

All these factors mentioned above will also be affected by 

future climatic changes. Therefore, tree species may differ in 

their suitability to cool the local environment under different 

conditions. For this reason, the selection of tree species should 

be performed by considering both present and future 

environmental conditions. 

4.2. Tree Position 

As considered the positive effects of afforested areas in 

cities, the size of green areas, plant selection, landscape design 

and continuity are of great importance in terms of increasing 

the quality of life (Kuşçu Şimşek, 2016). Furthermore, main 

aspects and functions of the plant design in parks and gardens 

(Sandeva et al., 2013) in urban environment need to be carefully 

met (Despot et al., 2013). In landscape areas serving a specific 

purpose, the correct positioning of species is as important as 

their selection (Fazio, 2017). Before determining the tree 

species and position to be used for cooling cities, the spatial 

distribution of temperature and climatic differences in the city 

should be considered (Tan et al., 2016; Morakinyo et al., 2020; 

Rakoto et al., 2021). 

According to a study (Adıgüzel et al., 2022) carried out for 

various surfaces (soil, parquet, asphalt, turf), the highest and the 

lowest surface temperatures were determined at the soil surface 

and on the parquet surface under the tree shade based on tree 

shade-sun exposure conditions, respectively. This study also 

revealed that hard surfaces had more absorption rates than grass 

surfaces throughout the day. 

It is a fact that the street canyons, building form and layout, 

which are formed by increasing urbanization, direct the 

afforestation activities and tree positioning (O'Malley et al., 

2014). In this direction, both urban and tree morphology as well 

as the afforestation rules determined by the countries (e.g., TS 

8146, 1990) should be considered when determining the 

position of trees in the strategies to reduce UHI effects (Tan et 

al., 2016). It was determined that trees cool the hot air more in 
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deep and wide canyons than in narrow and shallow canyons, 

depending on the amount of heat storage, the movement area of 

the wind, and the shaded and unshaded total surface area in 

cities (Loughner et al., 2012; Yang et al., 2017; Morakinyo et 

al., 2020). 

In a case study (Langenheim et al., 2020) considering the 

highest summer temperatures and the time zone corresponding 

to UV levels for a region in western Australia, the shadows 

formed by trees of various forms were simulated (Figure 4). 

This simulation suggested that pedestrians on east-west 

oriented streets felt the need for wider canopy trees to shade, 

and that taller tree forms on north-south oriented streets 

obtained more pedestrian shade especially when closely located 

during the target time period. Further studies should consider 

the shadow direction, i.e. the location and the sun angle of the 

city on the world.

 

Figure 4. Typical tree form models (A), Optimal geometry and placement model with height width output (B), Fitted recursive 3-D 

polygon-dense models of species on preferred council list (C), Perspective view of intersection demonstrating visual impact of tree-

scape design (D), Texture baked tree shade (E) (Langenheim et al., 2020). 
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Zhao et al. (2017) displayed a simulation to make the trees 

around the building optimum cooling and to maximize the 

shading of the façade, doors and windows. This study, which 

can serve as an example for cities in the northern hemisphere, 

showed that the best place for a single tree is at location 4, 

which is 3 m from the south side and 9 m from the west and 

east sides of the building (Figure 5). 

To locate a second tree with our heuristic method, the best 

near-optimal solution is at location 3 and 5 (Figure 6).

 

Figure 5. Optimal shading from one tree (August 15th, at location 4) (Zhao et al., 2017). 
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Figure 6. The best near-optimal shading from two trees (August 15th, at locations 3 and 5) (Zhao et al., 2017). 

 

5. Conclusion 

With the UHI effect, cities typically show higher average 

temperatures than the surrounding rural areas. The density of 

UHI may vary relying on the city and time. While the 

temperature difference is 6 °C in Istanbul, it reaches 9 °C in 

Antalya. Projections regarding climate change foresee an 

increase in temperatures and extreme heat events that will 

exacerbate the UHI effect. Prolonged high temperatures can 

have serious effects on human health. Therefore, adaptation to 

UHI should be achieved to plan short-, medium- and long-term 

changes. There are solid evidences that trees, urban green 

spaces and wider green infrastructure can bring significant 

reductions in urban temperatures and help prevent health 

problems caused by heat waves.  

Urban planners and decision makers can help combat UHI 

and increase urban resilience to the effects of climate change, 

primarily by planting the urban environment with extensive 

shade-providing species and harnessing the most of the 

opportunities afforded by restoration activities. Trees and other 

vegetation can cool the surrounding air by evapotranspiration 

thanks to both transpiration from plant leaves and evaporation 

of water from irrigated soil. It was figured out that tree canopy 

can considerably improve outdoor thermal comfort by 

preventing a pedestrian from being exposed to solar radiation, 

and also by protecting floors and building coverings from UHI 

effect. 

In the selection of tree species to combat UHI effect, their 

shading and/or evapotranspiration capacities should be 

evaluated, and heat, drought, disease and pollution tolerance, 

availability of rooting medium, and sensitivity to compression 

should also be considered. It is ideal to plant the southwest 

facades of the building in order to cool the building and ground 

surfaces and to provide human thermal comfort but neighbour 

relations and optimum utilization of solar energy by neighbours 

should not be neglected. In addition, if a roadside afforestation 
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is to be established to combat UHI effect, a proper plan based 

on the character of the road will be beneficial in terms of 

achieving the determined goals. 
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