The Role of Artificial Intelligence and Remote Sensing Technologies in Forest Ecosystems and Their Importance in Determining Carbon Capture Potential
DOI:
https://doi.org/10.61326/silvaworld.v3i1.248Keywords:
Artificial intelligence, Carbon capture, Machine learning, Remote sensingAbstract
Climate change and global warming are among the most pressing environmental issues requiring urgent and adequate global action to protect future generations worldwide. One of the key approaches used to reduce CO2 emissions and mitigate the worst effects of climate change is carbon capture technologies. Carbon capture technologies have the potential to capture carbon from the atmosphere and convert it into fuels that can be used in environmentally friendly energy production. Innovative technologies can enhance carbon capture potential, which can play a significant role in combating climate change. Better understanding of mechanisms for capturing, storing, and releasing carbon from the atmosphere allows for more accurate assessments of carbon capture potentials. Scientists, industries, and policymakers are making significant efforts to explore new technologies to reduce greenhouse gas emissions and achieve net-zero emission goals. Development of new technologies involves complex processes and requires a digital system to optimize big data forecasting and reduce production time. Mathematical and statistical approaches play a crucial role in solving research problems, providing fast results and cost-effective tools for predicting large datasets. Effective policies for carbon capture and international cooperation can enhance carbon capture potential. New policies and collaboration models can incentivize investment in carbon capture projects, thereby increasing their potential. These new approaches can be used to better understand carbon capture potential and develop effective solutions to combat climate change. However, research in this field is still ongoing, and further research and development will be needed in the future.
References
Agathokleous, E., Feng, Z., Oksanen, E., Sicard, P., Wang, Q., Saitanis, C. J., Araminiene, V., Blande, J. D., Hayes, F., Calatayud, V., Domingos, M., Veresoglou, S. D., Peñuelas. J., Wardle, D. A., De Marco, A., Li, Z., Harmens, H., Yuan, X., Vitale, M., & Paoletti, E. (2020). Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Science Advances, 6(33), 1-17. https://doi.org/10.1126/sciadv.abc1176
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., Emberson, L. D. (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63(1), 637-661. https://doi.org/10.1146/annurev-arplant-042110-103829
Ataf, A. A. A. (2017). Kastamonu orman işletme müdürlüğünde farklı meşcerelerde topraktaki karbon miktarının belirlenmesi (Doctoral dissertation, Kastamonu University). (In Tukish)
Chaudhry, S., & Sidhu, G. P. S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41, 1-31. https://doi.org/10.1007/s00299-021-02759-5
Chen, X., & Chen, H. Y. H. (2018). Global effects of plant litter alterations on soil CO2 to the atmosphere. Global Change Biology, 24(8), 3462-3471. https://doi.org/10.1111/gcb.14147
Felzer, B., Reilly, J., Melillo, J. Kicklighter, D., Sarofim, M., Wang, C., Prinn, R., & Zhuang, Q. (2005). Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Climatic Change, 73(3), 345-373. https://doi.org/10.1007/s10584-005-6776-4
Feng, Z., Yuan, X., Fares, S., Loreto, F., Li, P., Hoshika, Y., & Paoletti, E. (2019). Isoprene is more affected by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions. Plant, Cell & Environment, 42(6), 1939-1949. https://doi.org/10.1111/pce.13535
Feng, Z., Xu, Y., Kobayashi, K., Dai, L., Zhang, T., Agathokleous, E., Calatayud, V., Paoletti, E., Mukherjee, A., Agrawal, M., Park, R. J., Oak, Y. J., & Yue, X. (2022). Ozone pollution threatens the production of major staple crops in East Asia. Nature Food, 3, 47-56. https://doi.org/10.1038/s43016-021-00422-6
Gozukara, G., Anagun, Y., Isik, S., Zhang, Y., & Hartemink, A. E. (2023). Predicting soil EC using spectroscopy and smartphone-based digital images. CATENA, 231, 107319. https://doi.org/10.1016/j.catena.2023.107319
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 147101492. https://doi.org/10.5194/gmd-5-1471-2012
Işık, Ş., Turgut, B., Anagün, Y., & Olgun, M. (2024). Predicting soil quality index with a deep regression approach. Communications in Soil Science and Plant Analysis, 1-11. https://doi.org/10.1080/00103624.2024.2305838
Kahyaoğlu, N., Güvendi, E., & Kara, Ö. (2019). Saf doğu kayını meşcerelerinde toprak üstü biyokütle miktarlarının belirlenmesi (Sinop-Türkeli örneği). Anadolu Orman Araştırmaları Dergisi, 5(2), 79-85. (In Tukish)
Krishna, M. P., & Mohan, M. (2017). Litter decomposition in forest ecosystems: A review. Energy, Ecology and Environment, 2(4), 236-249. https://doi.org/10.1007/s40974-017-0064-9
Mirici, M. E., & Berberoğlu, S. (2020). Küresel iklim değişikliği çerçevesinde doğu Akdeniz bölgesi ekosistem hizmetlerinin karbon temelli modellenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 39(10), 41-51. (In Tukish)
Mitchell, J. B. (2014). Machine learning methods in chemoinformatics. WIREs Computational Molecular Science, 4(5), 468-481. https://doi.org/10.1002/wcms.1183
Nandy, S., Singh, R., Ghosh, S., Watham, T., Kushwaha, S. P. S., Kumar, A. S., & Dadhwal, V. K. (2017). Neural network-based modelling for forest biomass assessment. Carbon Management, 8(4), 305-317. https://doi.org/10.1080/17583004.2017.1357402
Odum, P. E. (1989). Ecology and our endangered life-support systems. Sinaver Associaters, Inc.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the World’s forests. Science, 333(6045), 988-993. https://doi.org/10.1126/science.1201609
Sazli, M. H. (2006). A brief review of feed-forward neural networks. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 50(1), 11-17. https://doi.org/10.1501/commua1-2_0000000026
Sitch, S., Cox, P. M., Collins, W. J., & Huntingford, C. (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448(7155), 791-794. https://doi.org/10.1038/nature06059
Taye, M. M. (2023). Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions. Computation, 11(3), 52. https://doi.org/10.3390/computation11030052
Tsai, M. T., & Kuo, Y. T. (2013). A forecasting system of carbon price in the carbon trading markets using artificial neural network. International Journal of Environmental Science and Development, 4(2), 163-167. https://doi.org/10.7763/IJESD.2013.V4.327
Yan, Y., Borhani, T. N., Subraveti, S. G., Pai, K. N., Prasad, V., Rajendran, A., & Clough, P. T. (2021). Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS)–a state-of-the-art review. Energy & Environmental Science, 14, 6122-6157. https://doi.org/10.1039/d1ee02395k
Zhang, L., Shao, Z., Liu, J., & Cheng, Q. (2019). Deep learning-based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 data. Remote Sensing, 11(12), 1459. https://doi.org/10.3390/rs11121459
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sümeyye Güler

This work is licensed under a Creative Commons Attribution 4.0 International License.