Assessment of Soil Carbon Stock in Different Land Use Types of Eastern Türkiye
DOI:
https://doi.org/10.61326/silvaworld.v4i1.296Keywords:
Climate change, Degradation, Land use types, Rangeland, Soil organic carbonAbstract
Soil organic carbon (SOC) is one of the sensitive indicators in monitoring changes in terrestrial ecosystems and land use practices. Studies to determine SOC stocks and increase their capacity are of critical importance in combating climate change and preventing land degradation. This study evaluated SOC stocks in a semi-arid micro-watershed with different land uses in the Eastern Anatolia Region. The land use types examined were identified as moderate rangeland (MR), weak rangeland (WR), agricultural land (AL), and degraded area (DA). Representative areas (1 ha each) were selected based on dominant vegetation and management history. A total of 60 soil samples were collected using a random sampling method, with 15 samples per hectare evenly distributed to minimize spatial variability. Sampling was conducted at two depths: 0-10 cm and 10-20 cm. Bulk density (BD), electrical conductivity (EC), pH, soil texture, calcium carbonate (CaCO3), and SOC analyses were conducted on the soil samples. The research findings revealed statistically significant differences in SOC stocks between land uses (P<0.001). The SOC amounts were calculated as follows: MR (50.79 Mg C ha-1) > AL (42.36 Mg C ha-1) > WR (30.86 Mg C ha-1) > DA (11.69 Mg C ha-1). These findings indicate that land use and management practices significantly influence SOC stocks. The highest SOC stocks (50.79 Mg C ha-¹) were recorded in MR and conservation of these areas can contribute significantly to carbon sequestration. The lowest SOC stocks (11.69 Mg C ha-¹) were recorded in DA and erosion control and vegetation restoration were recommended. For intermediate SOC stocks (42.36 Mg C ha-¹) in AL, the use of organic fertilizers and reduced tillage practices can reduce SOC losses. Lower SOC stocks (30.86 Mg C ha-¹) were recorded in WR, and improved grazing management was recommended. Additionally, it can be stated that sustainable soil management practices could prevent land degradation and thus contribute significantly to combating climate change.
References
Abdalla, M., Hastings, A., Chadwick, D. R., Jones, D. L., Evans, C. D., Jones, M. B., Rees, R. M., & Smith, P. (2018). Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agriculture, Ecosystems & Environment, 253, 62-81. https://doi.org/10.1016/j.agee.2017.10.023
Aderonke, D. O., & Gbadegesin, G. A. (2013). Spatial variability in soil properties of a continuously cultivated land. African Journal Agricultural Research, 8(5), 475-483. https://doi.org/10.5897/AJAR12.1847
Álvaro-Fuentes, J., Plaza-Bonilla, D., Arrúe, J. L., Lampurlanés, J., & Cantero-Martínez, C. (2014). Soil organic carbon storage in a no-tillage chronosequence under Mediterranean conditions. Plant and Soil, 376, 31-41. https://doi.org/10.1007/s11104-012-1167-x
Atalay, İ. (1982). Oltu çayı havzasının fiziki coğrafyası ve amenajmanı.
Ege Üniversitesi Sosyal Bilimler Fakültesi Yayınları. (In Turkish)
Babur, E., & Dindaroglu, T. (2020). Seasonal changes of soil organic carbon and microbial biomass carbon in different forest ecosystems. In I. Uher (Ed.), Environmental factors affecting human health (pp. 1-21). IntechOpen. https://doi.org/10.5772/intechopen.90656
Babur, E., Uslu, Ö. S., Battaglia, M. L., Mumtaz, M. Z., Danish, S., Fahad, S., Diatta, A. A., Datta, R., & Ozlu, E. (2021). Nitrogen fertilizer effects on microbial respiration, microbial biomass, and carbon sequestration in a Mediterranean grassland ecosystem. International Journal of Environmental Research, 15, 655-665 https://doi.org/10.1007/s41742-021-00336-y
Bargali, S. S., Singh, R. P., & Joshi, M. (1993). Changes in soil characteristics in eucalypt plantations replacing natural broad‐leaved forests. Journal of Vegetation Science, 4(1), 25-28. https://doi.org/10.2307/3235730
Bargali, S. S., Padalia, K., & Bargali, K. (2019). Effects of tree fostering on soil health and microbial biomass under different land use systems in central Himalaya. Land Degradation & Development, 30(16), 1984-1998. https://doi.org/10.1002/ldr.3394
Battaglia, M. L., Thomason, W. E., Fike, J. H., Evanylo, G. K., Stewart, R. D., Gross, C. D., Seleiman, M. F., Babur, E., Sadeghpour, A., & Harrison, M. T. (2022). Corn and wheat residue management effectson greenhouse gas emissions in the Mid-Atlantic USA. Land, 11(6), 846. https://doi.org/10.3390/land11060846
Berihu, T., Girmay, G., Sebhatleab, M., Berhane, E., Zenebe, A., & Sigua, G. C. (2017). Soil carbon and nitrogen losses following deforestation in Ethiopia. Agronomy for Sustainable Development, 37, 1. https://doi.org/10.1007/s13593-016-0408-4
Bewket, W., & Stroosnijder, L. (2003). Effects of agroecological land use succession on soil properties in Chemoga watershed, Blue Nile basin, Ethiopia. Geoderma, 111(1-2), 85-98. https://doi.org/10.1016/S0016-7061(02)00255-0
Brady, N. C., & Weil, R. R. (2008). The nature and properties of soils. Prentice Hall.
Brevik, E. C., Fenton, T. E., & Lazari, A. (2006). Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precision Agriculture, 7, 393-404. https://doi.org/10.1007/s11119-006-9021-x
Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1-2), 3-22. https://doi.org/10.1016/j.geoderma.2004.03.005
Cai, A., Xu, M., Wang, B., Zhang, W., Liang, G., Hou, E., & Luo, Y. (2019). Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil and Tillage Research, 189, 168-175. https://doi.org/10.1016/j.still.2018.12.022
Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M., & Maity, S. (2013). Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. International Journal of Scientific and Research Publications, 3(2), 1-8.
Coskun, T., Dasci, M., Gullap, M. K., Çomaklı, B., Yıldırım, Z. N., Bakir, H., & Birhan, H. (2016). Effects of different improvement treatments on botanical composition and sediment movement on grazed and enclosed range sites. Turkish Journal of Field Crops, 21(2), 269-275. https://doi.org/10.17557/tjfc.49191
Celik, İ., & Acar, M. (2017). Çukurova koşullarında toprak işleme yöntemlerinin agregatlara bağlı toplam karbon ve azot içerikleri üzerine etkileri. Anadolu Tarım Bilimleri Dergisi, 32(3), 383-390. https://doi.org/10.7161/omuanajas.289801 (In Turkish)
ÇEM. (2018). Toprak organik karbonu projesi, teknik özet. https://www.tarimorman.gov.tr/CEM/Belgeler/yay%C4%B1nlar/yay%C4%B1nlar%202018/Karbon%20Proje%2027Eyl%C3%BCl2018.pdf (In Turkish)
Çomaklı, B., Tuncay, Ö., & Daşcı, M. (2012). Farklı kullanım geçmişine sahip mera alanlarında bitki örtüsünün değişimi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(2), 75-82. (In Turkish)
Çomaklı, E. (2019). Mikrohavza ölçeğinde farklı arazi örtüsü ve kullanımlarında arazi tahribatının değerlendirilmesi: Narman alabalık mikrohavzası örneği (Doctoral dissertation, Ataturk University). (In Turkish)
Dindaroglu, T., Babur, E., Battaglia, M., Seleiman, M., Uslu, O. S., & Roy, R. (2021). Impact of depression areas and land-use change in the soil organic carbon and total nitrogen contents in a semi-arid karst ecosystem. Cerne, 27, e-102980. https://doi.org/10.1590/01047760202127012980
Don, A., Schumacher, J., & Freibauer, A. (2011). Impact of tropical land‐use change on soil organic carbon stocks–a meta‐analysis. Global Change Biology, 17(4), 1658-1670. https://doi.org/10.1111/j.1365-2486.2010.02336.x
Dursun, İ., & Babalık, A. A. (2021). De Martonne-Gottman ve Standart Yağış İndeksi yöntemleri kullanılarak kuraklığın belirlenmesi: Isparta ili örneği. Türkiye Ormancılık Dergisi, 22(3), 192-201. https://doi.org/10.18182/tjf.944195 (In Turkish)
Eze, S., Magilton, M., Magnone, D., Varga, S., Gould, I., Mercer, T. G., & Goddard, M. R. (2023). Meta-analysis of global soil data identifies robust indicators for short-term changes in soil organic carbon stock following land use change. Science of the Total Environment, 860, 160484. https://doi.org/10.1016/j.scitotenv.2022.160484
Gee, G. W., & Bauder, J. W. (1986). Particle‐size analysis. In A. Klute (Ed.), Methods of soil analysis: Part 1 physical and mineralogical methods, 5.1 (pp. 383-411). SSSA Book Series. https://doi.org/10.2136/sssabookser5.1.2ed.c15
Ghorbani, H., Kashi, H., & Hafezi-Moghaddam, N. (2013). Effect of change of pasture land to agricultural on some physical and chemical soil properties in Golestan province. Soil Management, 2(3), 49-58.
Gökkuş, A., Koç, A., & Çomaklı, B. (2000). Çayır - mer'a uygulama kılavuzu. Atatürk Üniversitesi, Ziraat Fakültesi. (In Turkish)
Gravuer, K., Gennet, S., & Throop, H. L. (2019). Organic amendment additions to rangelands: A meta‐analysis of multiple ecosystem outcomes. Global Change Biology, 25(3), 1152-1170. https://doi.org/10.1111/gcb.14535
Hai, L., Li, X. G., Li, F. M., Suo, D. R., & Guggenberger, G. (2010). Long-term fertilization and manuring effects on physically-separated soil organic matter pools under a wheat–wheat–maize cropping system in an arid region of China. Soil Biology and Biochemistry, 42(2), 253-259. https://doi.org/10.1016/j.soilbio.2009.10.023
Hashemi, S. S. (2017). Effect of land use type and different crop cultivations on different potassium forms of soils (with emphasis on clay mineralogy). Journal of Water and Soil Conservation, 24(5), 179-194. https://doi.org/10.22069/JWSC.2017.13064.2770
Hishe, S., Lyimo, J., & Bewket, W. (2017). Soil and water conservation effects on soil properties in the Middle Silluh Valley, northern Ethiopia. International Soil and Water Conservation Research, 5(3), 231-240. https://doi.org/10.1016/j.iswcr.2017.06.005
Houghton, R. A. (2018). Interactions between land-use change and climate-carbon cycle feedbacks. Current Climate Change Reports, 4, 115-127. https://doi.org/10.1007/s40641-018-0099-9
Husson, O., Brunet, A., Babre, D., Charpentier, H., Durand, M., & Sarthou, J.-P. (2018). Conservation agriculture systems alter the electrical characteristics (Eh, pH and EC) of four soil types in France. Soil and Tillage Research, 176, 57-68. https://doi.org/10.1016/j.still.2017.11.005
Janowiak, M., Connelly, W. J., Dante-Wood, K., Domke, G. M., Giardina, C., Kayler, Z., & Buford, M. (2017). Considering forest and grassland carbon in land management. General Technical Report. https://doi.org/10.2737/WO-GTR-95
Jones, D. L., Nguyen, C., & Finlay, R. D. (2009). Carbon flow in the rhizosphere: Carbon trading at the soil–root interface. Plant and Soil, 321, 5-33. https://doi.org/10.1007/s11104-009-9925-0
Koç, A., Gökkuş, A., & Altın, M. (2003). Mera durumu tespitinde dünyada yaygın olarak kullanılan yöntemlerin mukayesesi ve Türkiye için bir öneri. 5. Tarla Bitkileri Kongresi. Diyarbakır. (In Turkish)
Kühn, J., Brenning, A., Wehrhan, M., Koszinski, S., & Sommer, M. (2009). Interpretation of electrical conductivity patterns by soil properties and geological maps for precision agriculture. Precision Agriculture, 10, 490-507. https://doi.org/10.1007/s11119-008-9103-z
Lal, R., Delgado, J., Groffman, P., Millar, N., Dell, C., & Rotz, A. (2011). Management to mitigate and adapt to climate change. Journal of Soil and Water Conservation, 66(4), 276-285. https://doi.org/10.2489/jswc.66.4.276
Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston & M. E. Sumner (Eds.), Methods of soil analysis: Part 3 chemical methods, 5.3 (pp. 437-474). SSSA Book Series. https://doi.org/10.2136/sssabookser5.3.c15
Maia, S. M., Ogle, S. M., Cerri, C. E., & Cerri, C. C. (2010). Soil organic carbon stock change due to land use activity along the agricultural frontier of the southwestern Amazon, Brazil, between 1970 and 2002. Global Change Biology, 16(10), 2775-2788. https://doi.org/10.1111/j.1365-2486.2009.02105.x
Manral, V., Kiran, B., Bargali, S. S., & Shahi, C. (2020). Changes in soil biochemical properties following replacement of Banj oak forest with Chir pine in Central Himalaya, India. Ecological Processes, 9, 30. https://doi.org/10.1186/s13717-020-00235-8
Marschner, H. (1995). Mineral nutrition of higher plants. Academic Press. https://doi.org/10.1016/C2009-0-02402-7
Martín, J. R., Álvaro-Fuentes, J., Gonzalo, J., Gil, C., Ramos-Miras, J. J., Corbí, J. G., & Boluda, R. (2016). Assessment of the soil organic carbon stock in Spain. Geoderma, 264, 117-125. https://doi.org/10.1016/j.geoderma.2015.10.010
Martinez-Mena, M., Lopez, J., Almagro, M., Boix-Fayos, C., & Albaladejo, J. (2008). Effect of water erosion and cultivation on the soil carbon stock in a semiarid area of South-East Spain. Soil and Tillage Research, 99(1), 119-129. https://doi.org/10.1016/j.still.2008.01.009
Mera Kanunu. (1998). 23272 sayılı T.C. Resmi Gazete (Kanun no: 4342). (In Turkish)
MGM. (2022). İklim sınıflandırması Erzurum – Oltu. https://mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx?m=OLTU (In Turkish)
Nazari, N. (2013). Land use change from pasture to irrigated and dry farming arable land and its effect on soil properties in Miyaneh region, Iran. Agroecology Journal, 2(9), 43-50.
Neill, C., Melillo, J. M., Steudler, P. A., Cerri, C. C., de Moraes, J. F., Piccolo, M. C., & Brito, M. (1997). Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecological Applications, 7(4), 1216-1225. https://doi.org/10.1890/1051-0761(1997)007[1216:SCANSF]2.0.CO;2
Newhall, X. X. (1972). Two new integral transforms and their applications (Doctoral dissertation, California Institute of Technology).
Niu, D., Li, B., Wang, F., Wen, X., Ma, J., & Shu, P. (2015). Climate changes indicated by the clay minerals: A case of the Dishaogouwan section on the southeastern margin of the Mu Us Desert. Journal of Fuzhou University (National Science Education), 43, 345-351.
Okcu, M. (2020). Türkiye ve Doğu Anadolu Bölgesi çayır-mer’a alanları, hayvan varlığı ve yem bitkileri tarımının mevcut durumu. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 51(3), 321-330. https://doi.org/10.17097/ataunizfd.708884 (In Turkish)
Ozlu, E., Arriaga, F. J., Bilen, S., Gozukara, G., & Babur, E. (2022). Carbon footprint management by agricultural practices. Biology, 11(10), 1453. https://doi.org/10.3390/biology11101453
Padalia, K., Bargali, S. S., Bargali, K., & Khulbe, K. (2018). Microbial biomass carbon and nitrogen in relation to cropping systems in Central Himalaya, India. Current Science, 115(9), 1741-1750 https://doi.org/10.18520/cs/v115/i9/1741-1750
Paillet, Y., Cassagne, N., & Brun, J.-J. (2010). Monitoring forest soil properties with electrical resistivity. Biology and Fertility of Soils, 46, 451-460. https://doi.org/10.1007/s00374-010-0453-0
Palta, Ş., & Lermi, A. G. (2019). Mera islah uygulamasının değişim seyrinin belirlenmesi: Bartın ili Serdar Köyü örneği. COMU Journal of Agriculture Faculty, 7(2), 229-238. https://doi.org/10.33202/comuagri.567199 (In Turkish)
Pandey, R., Bargali, S. S., Bargali, K., & Pandey, V. C. (2023). Temporal variability in fine root dynamics in relation to tree girth size in sub-tropical Shorea robusta forests. Land Degradation & Development, 34(5), 1522-1537. https://doi.org/10.1002/ldr.4550
Paudel, S., & Sah, J. P. (2003). Physiochemical characteristics of soil in tropical sal (Shorea robusta Gaertn.) forests in eastern Nepal. Himalayan Journal of Sciences, 1(2), 107-110. https://doi.org/10.3126/hjs.v1i2.207
Peri, P. L., Rosas, Y. M., Ladd, B., Toledo, S., Lasagno, R. G., & Martínez Pastur, G. (2018). Modelling soil carbon content in South Patagonia and evaluating changes according to climate, vegetation, desertification and grazing. Sustainability, 10(2), 438. https://doi.org/10.3390/su10020438
Qi, F., Zhang, R., Liu, X., Niu, Y., Zhang, H., Li, H., & Zhang, G. (2018). Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil and Tillage Research, 184, 45-51. https://doi.org/10.1016/j.still.2018.06.011
Qiang, L., Pujia, Y., Guangdi, L., & Daowei, Z. (2016). Grass–legume ratio can change soil carbon and nitrogen storage in temperate steppe grassland. Soil and Tillage Research, 157, 23-31. https://doi.org/10.1016/j.still.2015.08.021
Quesada, C. A., Lloyd, J., Anderson, L. O., Fyllas, N. M., Schwarz, M., & Czimczik, C. I. (2011). Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences, 8(6), 1415-1440. https://doi.org/10.5194/bg-8-1415-2011
Rasmussen, C., Southard, R. J., & Horwath, W. R. (2007). Soil mineralogy affects conifer forest soil carbon source utilization and microbial priming. Soil Science Society of America Journal, 71(4), 1141-1150. https://doi.org/10.2136/sssaj2006.0375
Reyes, J., Wendroth, O., Matocha, C., Zhu, J., Ren, W., & Karathanasis, A. (2018). Reliably mapping clay content coregionalized with electrical conductivity. Soil Science Society of America Journal, 82(3), 578-592. https://doi.org/10.2136/sssaj2017.09.0327
Rhoades, J. D. (1993). Electrical conductivity methods for measuring and mapping soil salinity. Advances in Agronomy, 49, 201-251. https://doi.org/10.1016/S0065-2113(08)60795-6
Sheil, D. (2018). Forests, atmospheric water and an uncertain future: The new biology of the global water cycle. Forest Ecosystems, 5, 19. https://doi.org/10.1186/s40663-018-0138-y
Shiferaw, A., Yimer, F., & Tuffa, S. (2019). Changes in soil organic carbon stock under different land use types in semiarid Borana rangelands: Implications for CO2 emission mitigation in the rangelands. Journal of Agricultural Science and Food Research, 10(1), 1-5. https://doi.org/10.35248/2593-9173.19.10.254
Silver, W. L., Vergara, S. E., & Mayer, A. (2018). Carbon sequestration and greenhouse gas mitigation potential of composting and soil amendments on California’s rangelands. Retrieved Aug 20, 2024, from https://static1.squarespace.com/static/5d1e51dd2a98da000183bc20/t/5d1f8ec547f2400001487506/1562349257331/Silver+et+al.+2018+4th+assessment+%28003%29.pdf
Six, J., Elliott, E. T., & Paustian, K. (2000). Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32(14), 2099-2103. https://doi.org/10.1016/S0038-0717(00)00179-6
Smith, D. B., Cannon, W. F., Woodruff, L. G., Solano, F., Kilburn, J. E., & Fey, D. L. (2013). Geochemical and mineralogical data for soils of the conterminous United States. Retrieved Sep 18, 2024, from https://pubs.usgs.gov/ds/801/pdf/ds801.pdf
Sudduth, K. A., Kitchen, N. R., Wiebold, W. J., Batchelor, W. D., Bollero, G. A, Bullock, D. G.,Clay, D. E., Palm, H. L., Pierce, F. J., Schuler, R. T., & Thelen, K. D. (2005). Relating apparent electrical conductivity to soil properties across the north-central USA. Computers and Electronics in Agriculture, 46(1-3), 263-283. https://doi.org/10.1016/j.compag.2004.11.010
Sykes, A. J., Macleod, M., Eory, V., Rees, R. M., Payen, F., Myrgiotis, V., Williams, M., Sohi, S., Hillier, J., Moran, D., Manning, D. A. C., Goglio, P., Seghetta, M., Williams, A., Harris, J., Dondini, M., Walton, J., House, J., & Smith, P. (2020). Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology. Global Change Biology, 26, 1085-1108. https://doi.org/10.1111/gcb.14844
Takele, L., Chimdi, A., & Mengistie, A. (2015). Impacts of land use on selected physicochemical properties of soils of Gindeberet area, western Oromia, Ethiopia. Science, Technology and Arts Research Journal, 3(4), 36-41. https://doi.org/10.4314/star.v3i4.5
Teshome, Y., Shelem, B., & Kibebew, K. (2016). Characterization and classification of soils of Abobo area, western Ethiopia. Applied and Environmental Soil Science, 2016(1), 4708235. https://doi.org/10.1155/2016/4708235
Tilaki, G. A. D., Rahmani, R., Hoseini, S. A., & Vasenev, I. (2021). The effect of land management on carbon sequestration in salty rangelands of Golestan province, Iran. Acta Ecologica Sinica, 42(1), 82-89. https://doi.org/10.1016/j.chnaes.2021.03.001
TUBITAK BILGEM YTE. (2018). Soil organic carbon project, soil organic carbon estimation model report project code: 100311, Rev. No: 1.0.40. Release Date: 04.06.2018.
TÜİK. (2019). Agriculture. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=2
Vafaeizadeh, R., Ayoubi, S., Mosadeghi, M., & Yousefifard, M. (2016). Slope and land use changing effects on soil properties and magnetic susceptibility in hilly lands, Yasouj region. Journal of Water and Soil, 30(2). https://doi.org/10.22067/jsw.v30i2.48970
Vibhuti, Bargali, K., & Bargali, S. S. (2020). Effect of size and altitude on soil organic carbon stock in homegarden agroforestry system in Central Himalaya, India. Acta Ecologica Sinica, 40(6), 483-491. https://doi.org/10.1016/j.chnaes.2020.10.002
Wang, B., Waters, C., Orgill, S., Cowie, A., Clark, A., Li Liu, D., Marja, S., McGowen, I., & Sides, T. (2018). Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia. Ecological Indicators, 88, 425-438. https://doi.org/10.1016/j.ecolind.2018.01.049
Wang, Y., Shao, M., Zhu, Y., & Liu, Z. (2011). Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agricultural and Forest Meteorology, 151(4), 437-448. https://doi.org/10.1016/j.agrformet.2010.11.016
White, A. F., & Brantley, S. L. (2018). Chemical weathering rates of silicate minerals. Walter de Gruyter GmbH & Co KG.
Willaarts, B. A., Oyonarte, C., Muñoz‐Rojas, M., Ibáñez, J. J., & Aguilera, P. A. (2016). Environmental factors controlling soil organic carbon stocks in two contrasting Mediterranean climatic areas of southern Spain. Land Degradation & Development, 27(3), 603-611. https://doi.org/10.1002/ldr.2417
Yang, C., & Sun, J. (2021). Impact of soil degradation on plant communities in an overgrazed Tibetan alpine meadow. Journal of Arid Environments, 193, 104586. https://doi.org/10.1016/j.jaridenv.2021.104586
Yu, P., Han, D., Liu, S., Wen, X., Huang, Y., & Jia, H. (2018). Soil quality assessment under different land uses in an alpine grassland. Catena, 171, 280-287. https://doi.org/10.1016/j.catena.2018.07.021
Yusuf, H. M., Treydte, A. C., & Sauerborn, J. (2015). Managing semi-arid rangelands for carbon storage: Grazing and woody encroachment effects on soil carbon and nitrogen. PloS ONE, 10(10), e0109063. https://doi.org/10.1371/journal.pone.0109063
Zhaoyong, Z., Abuduwaili, J., & Yimit, H. (2014). The occurrence, sources and spatial characteristics of soil salt and assessment of soil salinization risk in Yanqi Basin, northwest China. PLoS ONE, 9(9), e106079. https://doi.org/10.1371/journal.pone.0106079
Zhou, X., Wu, W., Niu, K., & Du, G. (2019). Realistic loss of plant species diversity decreases soil quality in a Tibetan alpine meadow. Agriculture, Ecosystems & Environment, 279, 25-32. https://doi.org/10.1016/j.agee.2019.03.019
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Emre Çomaklı, Müdahir Özgül, Hüseyin Aydın

This work is licensed under a Creative Commons Attribution 4.0 International License.