Cedrus atlantica - Possible Alternative Tree Species under Changing Climate Conditions in Central Europe
DOI:
https://doi.org/10.61326/silvaworld.v4i1.327Keywords:
Cedrus atlantica, Genetic diversity, Practical cultivation trials , Seed stands, Spatial-genetic structures, Species differentiationAbstract
The effects of climate change are becoming increasingly visible and affect entire ecosystems and their services. Following more frequent dry years and the invasive spread of harmful organisms, interest in drought- and frost-tolerant alternative tree species in forestry practices is growing. The two cedar species, Atlas and Lebanon cedar are discussed as possible alternative tree species in Bavaria and Germany due to their high climate tolerance (drought and frost), wood quality and their potential to be integrated into local forests. Both cedar species can contribute to the stability of weakened spruce and pine forest stands and thus ensuring the supply of conifer stem wood in the long term. As there is hardly any cultivation experience in Bavaria so far, potential alternative tree species should be evaluated through provenance and practical cultivation trials. Particular attention should be paid to the origin of the forest reproductive material (FRM), as this plays a decisive role in adaptability and successful cultivation. The suitability and vitality of seed stands should be evaluated before use. In addition to evaluating the phenotype, it is essential to assess the genetic diversity and differentiation of plantations and populations within their natural distribution range. In this study 467 Cedrus atlantica (Endl.) Manetti ex Carrière tress from 11 populations were sampled and genotyped based on 15 variable nuclear microsatellite markers. Results showed that the applied markers are able to clearly differentiate between C. atlantica and C. libani. Genetic diversity varies among sampled C. atlantica populations and clear differentiation of C. atlantica from France and Morocco was found. Based on our results, all investigated Atlas cedar populations can be proposed as seed stands and conservation units. Future studies should include the Atlas cedar populations from Algeria.
References
Aoujdad, J., Abbas, Y., Hanane, S., Ouajdi, M., Bouther, B., Mounir, F., Zine El Abidine, A., & Fadli, M. (2015). Substrate effect on the growth of seedlings of four provenances of Atlas cedar (Cedrus atlantica M.) in plant nursery. Journal of Material and Environmental Science, 6(10), 2817-2824.
Bariteau, M., & Vauthier, D. (2011). Main results from the French cedar comparative field test network. In C. Besacier, F. Ducci, M. Malagnoux & O. Souvannavong (Eds.), Status of the experimental network of Mediterranean forest genetic resources (pp. 61-64). CRA SEL.
Bauhus, J., Forrester, D. I., Gardiner, B., Jactel, H., Vallejo, R., & Pretzsch, H. (2017). Ecological stability of mixed-species forests. In H. Pretzsch, D. Forrester & J. Bauhus (Eds.), Mixed-species forests (pp. 337-382). Springer. https://doi.org/10.1007/978-3-662-54553-9_7
Bayerisches Staatsministerium für Ernährung, Landwirtschaft, Forsten und Tourismus. (2020). Baumarten für den klimawald, leitlinien der bayerischen forstverwaltung. IdeenReich.Wald. (In German)
Bobo‐Pinilla, J., Nieto Lugilde, D., Terrab, A., Balao, F., & Peñas, J. (2022). Spatially explicit assessment of genetic variation to inform conservation effort for an endangered Mediterranean conifer, Cedrus atlantica. Ecology and Evolution, 12(12), e9613. https://doi.org/10.1002/ece3.9613
Bou Dagher-Kharrat, M., Grenier, G., Bariteau, M., Brown, S., Siljak-Yakovlev, S., & Savouré, A. (2001). Karyotype analysis reveals interspecific differentiation in the genus Cedrus despite genome size and base composition constancy. Theoretical and Applied Genetics, 103, 846-854. https://doi.org/10.1007/s001220100640
Carvalho, J., Loureiro, A., & Bariteau, M. (2011). Provenances trial of Cedrus atlantica Manetti in North-Eastern Portugal. In C. Besacier, F. Ducci, M. Malagnoux & O. Souvannavong (Eds.), Status of the ex-perimental network of Mediterranean forest genetic resources (pp. 65-67). CRA SEL.
Caudullo, G., Welk, E., & San-Miguel-Ayanz, J. (2017). Chorological maps for the main European woody species. Data in Brief, 12, 662-666. https://doi.org/10.1016/j.dib.2017.05.007
Chaïb, J., Danan, S., Jouaud, B., Hagen, L. S., Lefevre, F., & Fady, B. (2006). Identification and characterization of nuclear microsatellites in Mediterranean cedars (Cedrus spp.). Molecular Ecology Notes, 6(3), 840-842. https://doi.org/10.1111/j.1471-8286.2006.01364.x
Cheddadi, R., Henrot, A.-J., François, L., Boyer, F., Bush, M., Carré, M., Coissac, E., De Oliveira, P. E., Ficetola, F., Hambuckers, A., Huang, K., Lézine, A.-M., Nourelbait, M., Rhoujjati, A., Taberlet, P., Sarmiento, F., Abel-Schaad, D., Alba-Sánchez, F., & Zheng, Z. (2017). Microrefugia, climate change, and conservation of Cedrus atlantica in the Rif Mountains, Morocco. Frontiers in Ecology and Evolution, 5, 114. https://doi.org/10.3389/fevo.2017.00114
Cheddadi, R., Taberlet, P., Boyer, F., Coissac, E., Rhoujjati, A., Urbach, D., Remy, C., Khater, C., el Antry, S., Aoujdad, J., Carré, M., & Ficetola, G. F. (2022). Priority conservation areas for Cedrus atlantica in the Atlas Mountains, Morocco. Conservation Science and Practice, 4(6), e12680. https://doi.org/10.1111/csp2.12680
De Avila, A. L., & Albrecht, A. (2018). Alternative baumarten im klimawandel: Artensteckbriefe - eine stoffsammlung. ForstBW. (In German)
Earl, D. A., & von Holdt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361. https://doi.org/10.1007/s12686-011-9548-7
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294x.2005.02553.x
Fady, B., Lefevre, F., Vendramin, G. G., Ambert, A., Regnier, C., & Bariteau, M. (2008). Genetic consequences of past climate and human impact on eastern Mediterranean Cedrus libani forests. Implications for their conservation. Conserv Genet, 9, 85-95. https://doi.org/10.1007/s10592-007-9310-6
Fusaro, E. (2011). Cedrus atlantica and Cetrus libani provenances tests. Synthesis of the research carried out in Italy. In C. Besacier, F. Ducci, M. Malagnoux & O. Souvannavong (Eds.), Status of the ex-perimental network of Mediterranean forest genetic resources (pp. 68-74). CRA SEL.
Gökdemir, Ş., & Dağdaş, S. (2011). Lebanon cedar (Cedrus libani A. RICH.) provenance trails in central region of Turkey. In C. Besacier, F. Ducci, M. Malagnoux & O. Souvannavong (Eds.), Status of the ex-perimental network of Mediterranean forest genetic resources (pp. 75-80). CRA SEL.
Goudet, J. (2001). FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3). Updated from Goudet (1995).
Hemery, G. E., Clark, J. R., Aldinger, E., Claessens, H., Malvolti, M. E., O’connor, E., Raftoyannis, Y., Savill, P. S., & Brus, R. (2010). Growing scattered broadleaved tree species in Europe in a changing climate: A review of risks and opportunities. Forestry: An International Journal of Forest Research, 83(1), 65-81. https://doi.org/10.1093/forestry/cpp034
İmal, B., Semerci, A., & Gonzalez-Benecke, C. A. (2024). Intraspecific variability in cold hardiness of Taurus cedar (Cedrus libani A. Rich.) in Türkiye. European Journal of Forest Research, 143, 727-737. https://doi.org/10.1007/s10342-023-01648-8
Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 4(2), e281. https://doi.org/10.7717/peerj.281
Karam, M. J., Lefèvre, F., Dagher‐Kharrat, M. B., Pinosio, S., & Vendramin, G. G. (2015). Genomic exploration and molecular marker development in a large and complex conifer genome using RADseq and mRNAseq. Molecular Ecology Resources, 15(3), 601-612. https://doi.org/10.1111/1755-0998.12329
Karam, M. J., Aouad, M., Roig, A., Bile, A., Dagher-Kharrat, M. B., Klein, E. K., Fady, B., & Lefèvre, F. (2019). Characterizing the genetic diversity of Atlas cedar and phylogeny of Mediterranean Cedrus species with a new multiplex of 16 SSR markers. Tree Genetics & Genomes, 15, 60. https://doi.org/10.1007/s11295-019-1366-1
Kavaliauskas, D., Šeho, M., Baier, R., & Fussi, B. (2021). Genetic variability to assist in the delineation of provenance regions and selection of seed stands and gene conservation units of wild service tree (Sorbus torminalis (L.) Crantz) in southern Germany. European Journal of Forest Research, 140, 551-565. https://doi.org/10.1007/s10342-020-01352-x
Kavaliauskas, D., Šeho, M., Rau, B., & Fussi, B. (2022). Assessing genetic diversity of European white elm (Ulmus laevis Pallas) in Bavaria as an indicator for in-situ conservation and sustainable use of the species genetic resources. European Journal of Forest Research, 142, 145-160. https://doi.org/10.1007/s10342-022-01509-w
Knoke, T., Ammer, C., Stimm, B., & Mosandl, R. (2008). Admixing broadleaved to coniferous tree species: A review on yield, ecological stability and economics. European Journal of Forest Research, 127, 89-101. https://doi.org/10.1007/s10342-007-0186-2
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179-1191. https://doi.org/10.1111/1755-0998.12387
Laaribya, S., Alaoui, A., Ayan, S., & Dindaroglu, T. (2024). Changes in the potential distribution of Atlas Cedar in Morocco in the twenty-first century according to the emission scenarios of RCP 4,5 and RCP 8,5. Forestist, 74, 16-25. https://doi.org/10.5152/forestist.2023.0004
Linares, J. C., Taïqui, L., & Camarero, J. J. (2011). Increasing drought sensitivity and decline of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Forests, 2(3), 777-796. https://doi.org/10.3390/f2030777
Nedjahi, A., & Zanndouche, O. (2011). Variabilité intraspécifique du Cèdre de l’Atlas (Cedrus atlantica Manetti) en Algerie. Retrieved Jan 24, 2025, from https://foris.fao.org/static/data/silvamed/arezzo/nedjahi.pdf (In French)
Peakall, R., & Smouse P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19), 2537-2539. https://doi.org/10.1093/bioinformatics/bts460
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. https://doi.org/10.1093/genetics/155.2.945
Renau-Morata, B., Nebauer, S. G., Sales, E., Allainguillaume, J., Caligari, P., & Segura, J. (2005). Genetic diversity and structure of natural and managed populations of Cedrus atlantica (Pinaceae) assessed using random amplified polymorphic DNA. American Journal of Botany, 92(5), 875-884. https://doi.org/10.3732/ajb.92.5.875
Sarmoum, M., Camarero, J. J., & Abdoun, F. (2024). Aridification increases growth resistance of Atlas cedar forests in NW Algeria. Forest Ecology and Management, 556, 121730. https://doi.org/10.1016/j.foreco.2024.121730
Šeho, M. (2018). Atlaszeder als alternative für trockene Standorte. AFZ-Der Wald, 24, 30-32. (In German)
Šeho, M. (2019). Kurzportrait Atlaszeder (Cedrus atlantica (Endl.) Manetti ex Carrière). Retrieved Jan 24, 2025, from https://www.waldwissen.net/waldwirtschaft/waldbau/wuh_atlaszeder/index_DE (In German)
Šeho, M., & Janßen, A. (2019). Neue Schwerpunkte und Herausforderungen im Klimawandel. AFZ-Der Wald, 5, 20-23. (In German)
Šeho, M., Ayan, S., Huber, G., Kahveci, G. (2019). A review on Turkish hazel (Corylus colurna L.): A promising tree species for future assisted migration attempts, SEEFOR - South-east European Forestry, 10 (1) 53-63.
Šeho, M. (2020). Die Libanonzeder – dürretolerante Baumart für trockene Standorte. AFZ-Der Wald, 12, 16-20. (In German)
Šeho, M., & Janßen, A. (2020). Alternativbaumarten im Klimawandel – das bayerische Vorgehen aus forstgenetischer Sicht. Thünen Report, 76, 222-229. https://doi.org/10.3220/REP1584625360000 (In German)
Šeho, M. (2021). Neues vorgehen beim Aufbau klimastabiler Wälder - mit praxisanbauversuchen zu schnellerem erkenntnisgewinn. Intern Mitarbeitermagazin der Bayerischen Staatsforsten, Ausgabe, 107, 14-15. (In German)
Šeho, M., Kavaliauskas, D., Ayan, S., Čokeša, V., Petkova, K., Fussi, B. (2023). First insights into genetic structure and diversity of the threatened tree species Corylus colurna L. for conservation of its genetic resources and possible assisted migration. Forest Ecology and Management, 549, 121480. https://doi.org/10.1016/j.foreco.2023.121480
Slimani, S., Derridj, A., & Gutierrez, E. (2014). Ecological response of Cedrus atlantica to climate variability in the Massif of Guetiane (Algeria). Forest Systems, 23(3), 448-460. https://doi.org/10.5424/fs/2014233-05175
Spiecker, H. (2006). Minority tree species–a challenge for multi–purpose forestry. Nature based forestry in central Europe. Alternatives to industrial forestry and strict preservation. Studia Forestalia Slovenica, 126, 47-59.
Thurm, E. A., Hernandez, L., Baltensweiler, A., Ayan, S., Rasztovits, E., Bielak, K., & Falk, W. (2018). Alternative tree species under climate warming in managed European forests. Forest Ecology and Management, 430, 485-497. https://doi.org/10.1016/j.foreco.2018.08.028
Wazen, N., Garavaglia, V., Picard, N., Besacier, C., & Fady, B. (2018). Geographic distribution of 24 Mediterranean and European forest tree species [Data set]. In Geographic distribution of 24 major tree species in the Mediterranean and their genetic resources. FAO and Plan Bleu. https://doi.org/10.5281/zenodo.1308577
Wimmer, N., & Šeho, M. (2024). Praxisanbauversuche – neue Wege auf der Suche nach klimaresilienten Baumarten. LWF Aktuell, 144, 7. (In German)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhidin Šeho, Barbara Fussi, Darius Kavaliauskas

This work is licensed under a Creative Commons Attribution 4.0 International License.