Effects of Different Auxin Concentrations on Growth of Autumn Olive (Elaeagnus umbellata Thunb.) Saplings
DOI:
https://doi.org/10.61326/silvaworld.v4i2.401Keywords:
Cuttings propagation, Growth, IBA, Root collar diameter, Sapling heightAbstract
Autumn olive (Elaeagnus umbellata Thunb.) is a versatile plant used for numerous purposes in nature, distinguished by its medicinal and ecological benefits. Its ability to adapt and grow in challenging environmental conditions, improve soil, and survive with minimal water makes it a critical species, particularly in combating climate change. While this highly important plant can be propagated from seed, studies on its vegetative propagation are limited. The success of vegetative propagation is not solely a dependent on obtaining rooted cuttings; it depends on the production of high-quality saplings from these cuttings. Therefore, data on the effects of saplings grown from rooted cuttings on long-term growth performance are important to demonstrate the success of the application. This study was conducted to determine the optimal Indole-3-Butyric Acid (IBA) concentration for the growth of surviving individuals obtained from rooted cuttings at different time intervals (June 19, 2023, and December 8, 2023) over a period of one and a half years. For this purpose, the effects of different concentrations of Indole-3-Butyric Acid [IBA (1000 ppm, 5000 ppm, and 8000 ppm)] on the root collar diameter and sapling height in Elaeagnus umbellata saplings propagated from cuttings were investigated. A control group was also created without hormone application. It was found that IBA application improved the growth of E. umbellata saplings, but the first year of measurements were not sufficient to assess growth performance. Among the hormone concentrations tested over the long term, a dose of 5000 ppm IBA was found to be more effective on growth (p<0.05). The success of vegetative propagation depends on obtaining high-quality saplings that meet the desired standards. Therefore, to achieve long-term results, the rooting and sapling production processes must be considered.
References
Ahmad, S. D., & Kamal, M. (2002). Morpho-molecular characterization of local genotypes of Hippophae rhamnoides ssp. Turkestanica a multi-purpose plant from Northern Areas of Pakistan. Journal of Biological Sciences, 2(5), 351-354. https://doi.org/10.3923/jbs.2002.351.354
Ahmad, S. D., Sabir, S. M., Juma, M., & Asad, H. S. (2005). Morphological and biochemical variations in Elaeagnus umbellata Thunb. from mountains of Pakistan. Acta Botanica Croatica, 64(1), 121-128.
Ahmad, S. D., Sabir, S. M., & Zubair, M. (2006). Ecotypes diversity in autumn olive (Elaeagnus umbellata Thunb): A single plant with multiple micronutrient genes. Chemistry and Ecology, 22(6), 509-521. https://doi.org/10.1080/02757540601024819
Batista-Silva, W., de Paiva Gonçalves, J., Siqueira, J. A., Martins, A. O., Ribeiro, D. M., Nunes-Nesi, A., Zsögön, A., & Araújo, W. L. (2024). Auxin metabolism and the modulation of plant growth. Environmental and Experimental Botany, 226, 105917. https://doi.org/10.1016/j.envexpbot.2024.105917
Bayraktar, A., Yıldırım, N., Atar, F., & Turna, İ. (2018a). Effects of some auxins on propagation by hardwood cutting of autumn olive (Elaeagnus umbellata Thunb.). Turkish Journal of Forestry Research, 5(2), 112-116. https://doi.org/10.17568/ogmoad.401438
Bayraktar, A., Yıldırım N., Atar, F., & Turna, İ. (2018b). Effects of different rooting media and hormones on propagation by softwood cuttings of Elaeagnus umbellata. 4th Non-Wood Forest Products Symposium. Bursa.
Bhat, M. A., Mishra, A. K., Kamal, M. A., Rahman, S., & Jan, A. T. (2023). Elaeagnus umbellata: A miraculous shrub with potent health-promoting benefits from Northwest Himalaya. Saudi Journal of Biological Sciences, 30(6), 103662. https://doi.org/10.1016/j.sjbs.2023.103662
Blythe, E. K., Sibley, J. L., Tilt, K. M., & Ruter, J. M. (2007). Methods of auxin application in cutting propagation: A review of 70 years of scientific discovery and commercial practice. Journal of Environmental Horticulture, 25(3), 166-185. https://doi.org/10.24266/0738-2898-25.3.166
Bounous, G., Bullano, F., & Peano, C. (1992). Propagation by softwood cuttings of Amelanchier canadensis Medic., Cornus mas L., Elaeagnus umbellata Thunb. and Hippophae rhamnoides L. Monti e Boschi, 43(4), 51-57.
Bryant, P. H., & Trueman, S. J. (2015). Stem anatomy and adventitious root formation in cuttings of Angophora, Corymbia and Eucalyptus. Forests, 6(4), 1227-1238. https://doi.org/10.3390/f6041227
Carlson, W. C. (1986). Root system considerations in the quality of loblolly pine seedlings. Southern Journal of Applied Forestry, 10(2), 87-92. https://doi.org/10.1093/sjaf/10.2.87
Çelik, D. (2016). Güzyemişinin (Elaeagnus umbellata Thunb.) çelikle çoğaltılmasında çelik alma zamanı ve IBA uygulamalarının etkileri (Master’s thesis, Ondokuz Mayıs University). (In Turkish)
Çelik, H., & Çil, D. (2021). Effects of externally applied IBA doses on rooting and sapling characteristics of autumn olive berry cuttings taken at different periods. International Journal of Food Science and Agriculture, 5(1), 33-40. https://doi.org/10.26855/ijfsa.2021.03.006
Çetin, B. (2024). The effect of hormone treatment on the rooting of Leyland cypress cuttings. Forestist, 74(2), 138-141. https://doi.org/10.5152/forestist.2024.23036
Chandramouli, H. (2001). Influence of growth regulators on the rooting of different types of cuttings in Bursera penicillata (DC) (Master’s thesis, Agricultural Sciences-Bangalore University).
Chauhan, S., Kumari, A., Saini, P., Jha, S. K., & Rawale, G. B. (2023). Ecotype diversity assessment of autumn olive (Elaeagnus umbellata Thunb.) in Himachal Pradesh. Indian Journal of Ecology, 50(4), 1002-1007. https://doi.org/10.55362/IJE/2023/4004
Chen, H., Lei, Y., Sun., J., Ma, M., Deng, P., Quan, J., & Bi, H. (2023). Effects of different growth hormones on rooting and endogenous hormone content of two Morus alba L. cuttings. Horticulturae, 9(5), 552. https://doi.org/10.3390/horticulturae9050552
Ciccarese, L., & Jinks, R. L. (1997). Effects of soaking, washing, and warm pretreatment on the germination of Russian- olive and autumn-olive seeds. Tree Planters' Notes, 48(1/2), 18-23.
Clark, J., & Hemery, G. (2006). The use of autumn olive (Elaeagnus umbellata Thunb.) in British forestry. Quarterly Journal of Forestry, 100(4), 285-288.
Çorbacı, Ö. L., Ekren, E., & Bayram, F. (2023). Farklı IBA (İndol-3-Bütirik Asit) dozlarının Argyranthemum frutescens (L.) Sch.Bip. (Çeşme Papatyası) çeliklerinin büyüme ve gelişmesi üzerine etkilerinin belirlenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 24(2), 108-116. https://doi.org/10.17474/artvinofd.1324619 (In Turkish)
Cüce, M. (2024). Şebinkarahisar’da yetiştirilen karadut odun çeliklerinin köklenmesi üzerine farklı oksin çeşitlerinin etkisi. Karadeniz Fen Bilimleri Dergisi, 14(1), 304-314. https://doi.org/10.31466/kfbd.1405361 (In Turkish)
de-Klerk, G. J., van der Krieken, W., & de-Jong, J. C. (1999). The formation of adventitious roots: New concepts, new possibilities. In Vitro Cellular and Developmental Biology, 35, 189-199. https://doi.org/10.1007/s11627-999-0076-z
Doungous, O., Minyaka, E., Medza-Mve, S. D., Medueghue, A. F., Ngone, M. A., Simo, C., & Nsimi, A. M. (2019). Improving propagation methods of Gnetum africanum and G. buchholzianum from cuttings for rapid multiplication, domestication and conservation. Agroforestry Systems, 93, 1557-1565. https://doi.org/10.1007/s10457-018-0269-8
Eckardt, N., & Sather, N. (1987). The nature conservancy element stewardship abstract for E. umbellata practice. Retrieved 08 Aug, 2025, from https://share.google/CJMNYURZkE6B7I5ig
Fordham, I. M., Clevidence, B. A., Wiley, E. R., & Zimmerman, R. H. (2001). Fruit of autumn olive: A rich source of lycopene. HortScience, 36(6), 1136-1137. https://doi.org/10.21273/HORTSCI.36.6.1136
Fordham, I. M., Zimmerman, R. H., Black, B. L., Clevidence B. M., & Wiley E. R. (2002). Autumn olive: A potential alternative crop. XXVI International Horticultural Congress: Berry Crop Breeding, Production and Utilization for a New Century. Toronto.
Foster, G. S., Stelzer, H. E., & McRae, J. B. (2000). Loblolly pine cutting morphological traits: Effects of rooting and field performance. New Forests, 19, 291-306. https://doi.org/10.1023/A:1006691808772
Fowler, D. K., & Adkisson, L. F. (1980). Survival and growth of wildlife shrubs and trees on acid mine spoil. TVA Tech. Note B37.
Fowler, L. J., & Fowler, D. K. (1987). Stratification and temperature requirements for germination of autumn olive (Elaeagnus umbellata) seed. Tree Planters’ Notes, 38(1), 14-17.
Gamba, G., Donno, D., Mellano, M. G., Riondato, I., De Biaggi, M., Randriamampionona, D., & Beccaro, G. L. (2020). Phytochemical characterization and bioactivity evaluation of autumn olive (Elaeagnus umbellata Thunb.) pseudodrupes as potential sources of health-promoting compounds. Applied Sciences, 10(12), 4354. https://doi.org/10.3390/app10124354
Gerçekcioğlu, R., & Aslan, Z. (2021). Hünnap’ın (Ziziphus jujuba) yeşil ve odun çelikleri ile köklenmesi üzerine hormon uygulamalarının etkileri. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 10(2), 165-175. (In Turkish)
Ghellam, M., Zannou, O., Pashazadeh, H., Galanakis, C. M., Aldawoud, T. M. S., Ibrahim, S. A., & Koca, İ. (2021). Optimization of osmotic dehydration of autumn olive berries using response surface methodology. Foods, 10(5), 1075. https://doi.org/10.3390/foods10051075
Goldfarb, B., Surles, S. E., Thetford, M., & Blazich, F. A. (1998). Effects of root morphology on nursery and first-year field growth of rooted cuttings of loblolly pine. Journal of Applied Forestry, 22(4), 231-234. https://doi.org/10.1093/sjaf/22.4.231
Graham, S. A. (1964). The Elaeagnaceae in the southeastern United States. Journal of the Arnold Arboretum, 45(2), 274-278.
Haines, R. J., Copley, T. R., Huth, J. R., & Nester, M. R. (1992). Shoot selection and the rooting and field performance of tropical pine cuttings. Forest Science, 38(1), 95-101. https://doi.org/10.1093/forestscience/38.1.95
Han, H., Zhang, H., & Sun, X. (2009). A review on the molecular mechanism of plants rooting modulated by auxin. African Journal of Biotechnology, 8(3), 348-353.
Hartmann, H. T., Kester, D. E., Davies, F. T., & Geneve, R. L. (2011). Plant propagation: Principles and practices, 8th Edition. Prentice-Hall.
Hartmann, H. T., Kester, D. E., Davies, F. T., & Geneve, R. L. (1997). Plant propagation: Principles and practices, 6th Edition. Prentice-Hall.
Henrique, A., Campinhos, E. N., Ono, E. O., & Pinho, S. Z. D. (2006). Effect of plant growth regulators in the rooting of Pinus cuttings. Brazilian Archives of Biology and Technology, 49(2), 189-196. https://doi.org/10.1590/S1516-89132006000300002
Hunt, M. A., Trueman, S. J., & Rasmussen, A. (2011). Indole-3-butyric acid accelerates adventitious root formation and impedes shoot growth of Pinus elliottii var. elliottii × P. caribaea var. hondurensis cuttings. New Forests, 41, 349-360. https://doi.org/10.1007/s11056-010-9227-7
Husen, A., Iqbal, M., Siddiqui, S. N., Sohrab, S. S., & Masresha, G. (2017). Effect of indole-3-butyric acid on clonal propagation of mulberry (Morus alba L.) stem cuttings: Rooting and associated biochemical changes. Proceedings of the National Academy of Sciences, India - Section B: Biological Sciences, 87, 161-166. https://doi.org/10.1007/s40011-015-0597-7
İzgi, M. N. (2020). Farklı IBA (İndol-3-Bütirik Asit) dozları ve köklendirme ortamlarının bazı tıbbi bitkilerin köklenmesi üzerine etkileri. Türkiye Tarımsal Araştırmalar Dergisi, 7(1), 9-16. https://doi.org/10.19159/tutad.590323 (In Turkish)
Jan, I., Sajid, M., Rab, A., Iqbal, A., Khan, O., Jamal, Y., Ahmad, N., Ali, A., Shakoor, M., & Shah, S. T. (2015). Effect of various concentrations of In-dole butyric acid (IBA) on olive cuttings. Mitteilungen Klosterneuburg, 65, 49-55.
Kantar, A. (2017). Hünnapın (Ziziphus jujuba Mill.) çelikle çoğaltılması (Master’s thesis, Ordu University). (In Turkish)
Khan, N., Hamid, F. S., Ahmad, F., Khan, S. A., Ahmed, I., Khan, M. A., Islam, S., Waheed, A., Shah, B. H., & Shah, H. (2020). Optimization of IBA concentration for rapid initiation of roots and ultimate growth of kiwi seedlings and the association between root system architecture and seedlings growth. Pakistan Journal of Agricultural Research, 33(1), 63-71 https://doi.org/10.17582/journal.pjar/2020/33.1.63.71
Khattak, K. F. (2012). Free radical scavenging activity, phytochemical composition and nutrient analysis of Elaeagnus umbellata berry. Journal of Medicinal Plants, 6(39), 5196-5203. https://doi.org/10.5897/JMPR11.1128
Kim, S. C., Ku, C. D., Park, M. C., Kim, C. H., Song, S. D., & An, C. S. (1993). Isolation of symbiotic Frankia Eulk1 strain from root nodule of Elaeagnus umbellata. Korean Journal of Botany, 36, 177-182.
Kohri, M., Mahito, K., & Nakagoshi, N. (2011). Spatial-temporal distribution of ornithochorous seeds from an Elaeagnus umbellata community dominating a riparian habitat. Plant Species Biology, 26(2), 174-185. https://doi.org/10.1111/j.1442-1984.2011.00313.x
Ludwig-Müller, J. (2000). Indole-3-butyric acid in plant growth and development. Plant Growth Regulation, 32, 219-230. https://doi.org/10.1023/A:1010746806891
Malinich, E., Lynn-Bell, N., & Kourtev, P. S. (2017). The effect of the invasive Elaeagnus umbellata on soil microbial communities depends on proximity of soils to plants. Ecosphere, 8(5), e01827. https://doi.org/10.1002/ecs2.1827
Munger, G. T. (2003). Elaeagnus umbellata. Retrieved …, …, from https://www.fs.usda.gov/database/feis/plants/shrub/elaumb/all.html
Nazir, N., Khan, S., Karim, N., Nisar, M., Aziz, T., Shami, A., Al-Asmari, F., Alhhazmi, A. A., Al-Joufi, F. A., & Alwethaynani, M. S. (2025). Elucidating the phytochemical, antibacterial, and hepatoprotective effects of Elaeagnus umbellata leaf extract against liver injury in an animal model. Cell Biochemistry and Biophysics, 83, 3933-3944 https://doi.org/10.1007/s12013-025-01767-6
Neto, F. J. D., dos Santos Carneiro, D. C., Putti, F. F., Rodrigues, J. D., Tecchio, M. A., Leonel, S., de Souza Silva, M. (2024). Physiological indexes in seed germination and seedling growth of rangpur lime (Citrus limonia L. Osbeck) under plant growth regulators. Agronomy, 14(9), 2066. https://doi.org/10.3390/agronomy14092066
Olson, D. F., & Barbour, R. J. (2004). Elaeagnus L. Retrieved 08 Aug, 2025, from https://www.fs.usda.gov/nsl/Wpsm/Elaeagnus.pdf
Patel, S. (2015). Plant genus Elaeagnus: Underutilized lycopene and linoleic acid reserve with permaculture potential. Fruits, 70(4), 191-199. https://doi.org/10.1051/fruits/2015014
Petrescu, A., & Paraschiv, M. (2022). The nutritional potential of some Elaeagnus umbellata biotypes selected in Romania. JOURNAL of Horticulture, Forestry and Biotechnology, 26(4), 103-107.
Pulatkan, M., & Kaya Şahin, E. (2022) Magnolia kobus DC.'nin yeşil çelikle üretiminde farklı hormon uygulamalarının etkileri. Ormancılık Araştırma Dergisi, 9, 24-29. https://doi.org/10.17568/ogmoad.1094961 (In Turkish)
Shahzad, U., Kareem, A., Altaf, K., Zaman, S., Ditta, A., Yousafi, Q., & Calica, P. (2019). Effects of auxin and media additives on the clonal propagation of guava cuttings (Psidium guajava L.) Var. Chinese Gola. Journal of Agricultural Science and Food Research, 10(3), 265. https://doi.org/10.35248/2593-9173.19.10.265
South, D. B., Boyer, J. N., & Bosch, L. (1985). Survival and growth of loblolly pine as influenced by seedling grade: 13-year results. Southern Journal of Applied Forestry, 9(2), 76-81. https://doi.org/10.1093/sjaf/9.2.76
Taiz, L., & Zeiger, E. (2013). Fisiologia vegetal. Artmed.
Tien, L. H., Chac L. D., Oanh, L. T. L., Ly, P. T., Sau, H. T., Hung, N., Thanh, V. Q., Doudkin, R. V., & Thinh B. B. (2020). Effect of auxins (IAA, IBA and NAA) on clonal propagation of Solanum procumbens stem cuttings. Plant Cell Biotechnology and Molecular Biology, 21(55-56), 113-120.
Torrey, J. G. (1978). Nitrogen fixation by actinomycete-nodulated angiosperms. Bioscience, 28(9), 586-592. https://doi.org/10.2307/1307515
Üreyen Esertaş, Ü. Z., & Cora, M. (2024). Biological activities of Elaeagnus umbellata methanol extract. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(6), 1262-1268. https://doi.org/10.18016/ksutarimdoga.vi.1434448
Wahab, F., Nabi, G., Ali, N., & Shah, M. (2001). Rooting response of semi-hardwood cuttings of guava (Psidium guajava L.) to various concentrations of different auxins. Journal of Biological Sciences, 1(4), 184-187. https://doi.org/10.3923/jbs.2001.184.187
Wakeley, P. C. (1969). Results of southern pine planting experiments established in the middle twenties. Journal of Forestry, 67(4), 237-241. https://doi.org/10.1093/jof/67.4.237
Yan, S. P., Yang, R. H., Wang, F., Sun, L. N., & Song, X. S. (2017). Effect of auxins and associated metabolic changes on cuttings of hybrid aspen. Forests, 8(4), 117. https://doi.org/10.3390/f8040117
Yang, X. P., Yu, H., & Wang, G. (2021). Studies on micro-cuttage propagation with hardwood cuttings of Zanthoxylum bungeanum. Journal of Northwest Forestry University, 36, 145-149.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ercan Oktan, Neslihan Atar, Öznur Özkan

This work is licensed under a Creative Commons Attribution 4.0 International License.
