Determination of Artificial Incubation Time of Some Malawi Cichlid Species Incubating in the Mouth (Iodotropheus sprengerae, Cyrtocara moorii, Maylandia estherae, Labidochromis caeruleus) Eggs

Authors

DOI:

https://doi.org/10.29329/actanatsci.2020.313.9

Keywords:

Ornamental fish, Cichlidae, Malawi cichlid species, Hatching

Abstract

Malawi cichlid species belonging to the Cichlidae family are among the most popular commercial species in the aquarium industry. Females of this species begin to incubate their eggs in the mouth after ovulation. Professional producers continue to induce vomiting of the eggs from the female's mouth at many different times and grow them with artificial incubation. The aim of this study is to determine the most appropriate time to induce vomiting and artificial incubation of eggs of these species. For this purpose, rusty cichlid (Iodotropheus sprengerae), blue dolphin cichlid (Cyrtocara moorii), red zebra cichlid (Maylandia estherae) and electric yellow cichlid (Labidochromis caeruleus) were produced in colonies. The development of eggs and larvae obtained from broodstocks were observed. Critical times for cichlid culture have been determined. While electric yellow cichlid (L. caeruleus) completed its embryonic development on the 3rd day after ovulation, blue dolphin cichlid (C. moorii) and red zebra cichlid (M. estherae) species completed on the 4th day, rusty cichlid (I. sprengerae) completed on the 5th day. Therefore, the results of the present study revealed that it is not appropriate to apply the same incubation technique to all these species.

References

Evers, H.‐G., Pinnegar, J. K., & Taylor, M. I. (2019). Where are they all from? – Sources and sustainability in the ornamental freshwater fish trade. Journal of Fish Biology, 94(6), 909–916. https://doi.org/10.1111/jfb.13930

Farias, I. P., Ortí, G., & Meyer, A. (2000). Total evidence: molecules, morphology and the phylogenetics of cichlids fishes. Journal of Experimental Zoology, 288(1), 76–92. https://doi.org/10.1002/(SICI)1097-010X(20000 415)288:1%3C76::AID-JEZ8%3E3.0.CO;2-P

Fryer, G., & Iles, T. D. (1972). The cichlid fishes of the Great Lakes of Africa: Their biology and evolution. Edinburgh: Oliver & Boyd.

Gilbert, S. F., & Bolker, J. A. (2003). Ecological developmental biology: preface to the symposium. Evolution & Development, 5, 3–8. https://doi.org/10.1046/j.1525-142X.2003.0300 2.x

Henning, F., & Meyer, A. (2014). The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annual Review of Genomics and Human Genetics, 15, 1–516. https://doi.org/10.1146/ annurev-genom-090413-025412

Kornfield, I., & Smith, P. F. (2000). African cichlid fishes: model systems for evolutionary biology. Annual Review of Ecology and Systematics, 31, 163–196. https://doi.org/10.1146/annurev. ecolsys.31.1.163

Koumoundouros, G., Divanach, P., & Kentouri, M. (1999). Ontogeny and allometric plasticity of Dentex dentex (Osteichthyes: sparidae) in rearing conditions. Marine Biology, 135, 561–572. https://doi.org/10.1007/s002270050657

Kratochwil, C. F., & Meyer, A. (2015). Closing the genotype – phenotype gap: emerging Technologies for evolutionary genetics in ecological model vertebrate systems. Bioessays, 37, 213–226. https://doi.org/10.1002/ bies.201400142

Kratochwil, C. F., Sefton, M. M., & Meyer, A. (2015). Embryonic and larval development in the Midas cichlid fish species flock (Amphilophus spp.): A new evo-devo model for the investigation of adaptive novelties and species differences. BMC Developmental Biology, 15, 12. https://doi.org/ 10.1186/s12861-015-0061-1

Meijide, F. J., & Guerrero, G. A. (2000). Embryonic and larval development of a substratebrooding cichlid Cichlasoma dimerus (Heckel 1840) under laboratory conditions. Journal of Zoology, 252, 481–493. https://doi.org/10.1111/j.1469-7998.2000.tb012 31.x

Meyer, A. (1986). Changes in behavior with increasing experience with a novel prey in fry of the Central American cichlid, Cichlasoma managuense (Teleostei: Cichlidae). Behaviour, 98, 145–167.

Meyer, A. (1987). Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution, 41, 1357–1369.

Meyer, A. (1988). Plasticity in morphology and performance in the trophically polymorphic cichlid fish Cichlasoma citrinellum. [PhD Thesis, University of California, Berkeley, CA].

Meyer, A. (1993). Phylogenetic relationships and evolutionary processes in east-African cichlid fishes. Trends in Ecology and Evolution, 8, 279–284. https://doi.org/10.1016/0169-5347(93) 90255-N

Meyer, A., Kocher, T. D., & Wilson, A. C. (1991). African fishes – a replay. Nature, 351, 467–468.

Saemi‐Komsari, M., Mousavi‐Sabet, H., Kratochwil, C. F., Sattari, M., Eagderi, S., & Meyer, A. (2018). Early developmental and allometric patterns in the electric yellow cichlid Labidochromis caeruleu. Journal of Fish Biology, 92(6), 1888–1901. https://doi.org/10.1111/jfb.13627

Salzburger, W., & Meyer, A. (2004). The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften, 91, 277–290. https://doi.org/10.1007/s00114-004-0528-6

Snoeks, J. (2000). How well known is the ichthyodiversity of the large East African lakes? Advances in Ecological Research, 31, 17–38. https://doi.org/10.1016/S0065-2504(00)31005-4

Sturmbauer, C., & Meyer, A. (1992). Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature, 359, 578–581.

Turner, G. F., Seehausen, O., Knight, M. E., Allender, C. J., & Robinson, R. L. (2001). How many cichlid fishes are there in African Lakes? Molecular Ecology, 10, 793–806. https://doi.org/10.1046/j.1365-294x.2001.0120 0.x

van Maaren, C. C., & Daniels, H. V. (2000). A practical guide to the morphological development of southern flounder, Paralichthys lethostigma, from hatch through metamorphosis. Journal of Applied Aquaculture, 10, 1–9. https://doi.org/10.1300/ J028v10n02_01

Downloads

Published

2020-12-31

How to Cite

Çelik, P., & Yalçın, B. R. (2020). Determination of Artificial Incubation Time of Some Malawi Cichlid Species Incubating in the Mouth (Iodotropheus sprengerae, Cyrtocara moorii, Maylandia estherae, Labidochromis caeruleus) Eggs. Acta Natura Et Scientia, 1(1), 69–81. https://doi.org/10.29329/actanatsci.2020.313.9

Issue

Section

Original Research Papers