Larval Development of Siamese Fighting Fish (Betta splendens Regan, 1910)
DOI:
https://doi.org/10.29329/actanatsci.2022.352.06Keywords:
Fighting fish beta, Betta splendens, Ornamental fish, Larvae, AquacultureAbstract
In this study, the larval development stages of one of the most important ornamental fish Siamese fighting fish betta (Betta splendens Regan, 1910) were examined. The larval development stage was documented from hatching until the beginning of the juvenile period. The fertilized eggs were incubated at a water temperature of 28±0.5°C. The embryonic developmental stage was completed and hatching was observed at 28-32 hours post fertilization (hpf). The mouth and anus were closed 1 day after hatching (DAH). The mouth and anus were opened at 2 DAH. Exogenous feeding started on 3 DAH. The swim bladder was inflated at 2–3 DAH. The yolk sac was completely consumed at 4 DAH and the larvae began to swim freely. The larval development of Betta splendens was divided into four different periods: Yolk-sac larva (1–4 DAH), preflexion larva (4–8 DAH), flexion larva (11-12 DAH) and post-flexion larva (13–30 DAH). The larval metamorphosis was completed, and the larvae transformed into juveniles at 30 DAH.
References
Bogner, D. M., Kaemingk, M. A., & Wuellner, M. R. (2016). Consequences of hatch phenology on stages of fish recruitment, PLOS ONE, 11(10), e0164980. https://doi.org/10.1371/journal.pone.0164980
Çelik, I., Çelik, P., Cirik, Ş., Gürkan, M., & Hayretdağ, S. (2012). Embryonic and larval development of black skirt tetra (Gymnocorymbus ternetzi, Boulenger, 1895) under laboratory conditions. Aquaculture Research, 43(9), 1260-1275. https://doi.org/10.1111/j.1365-2109.2011.02930.x
Çelik, P., & Cirik, Ş. (2020). Embryonic and larval development of serpae tetra Hyphessobrycon eques (Steindachner, 1882). Aquaculture Research, 51(1), 292-306. https://doi.org/10.1111/are.14375
Chapman, F. A., Fitz‐Coy, S. A., Thunberg, E. M., & Adams, C. M. (1997). United States of America trade in ornamental fish. Journal of the World Aquaculture Society, 28(1), 1-10. https://doi.org/10.1111/j.1749-7345.1997.tb00955.x
Forsatkar, M. N., & Nematollahi, M. A. (2013). Effect of incubation temperature on the embryonic and larval development of the Siamese fighting fish (Betta splendens). Journal of Animal Environment, 5(1), 45-51.
Forsythe, P. S., Scribner, K. T., Crossman, J. A., Ragavendran, A., & Baker, E. A. (2013). Experimental assessment of the magnitude and sources of Lake Sturgeon egg mortality. Transactions of the American Fisheries Society, 142(4), 1005–1011. https://doi.org/10.1080/00028487.2013.790847
Garrido, S., Ben-Hamadou, R., Santos, A. M. P., Ferreira, S., Teodósio, M. A., Cotano, U., Irigoien, X., Peck, M. A., Saiz, E., & Ré, P. (2015). Born small, die young: Intrinsic, size selective mortality in marine larval fish. Scientific Reports, 5(1), 17065. https://doi.org/10.1038/srep17065.1-10
Groth, W. O. (1970). Embryology of the Siamese Fighting Fish, Betta splendens. [Ph.D. Thesis, Drake University].
Jůza, T., Čech, M., Kubečka, J., Vašek, M., Peterka, J., & Matěna, J. (2010). The influence of the trawl mouth opening size and net colour on catch efficiency during sampling of early fish stages. Fisheries Research, 105(3), 125-133. https://doi.org/10.1016/j.fishres.2010.03.010
Kaemingk, M. A., Graeb, B. D. S., & Willis, D. W. (2014). Temperature, hatch date, and prey availability influence age-0 yellow perch growth and survival. Transactions of the American Fisheries Society, 143(4), 845-855. https://doi.org/10.1080/00028487.2014.886622
Kendall, A. W., Ahlstrom, E. H., & Moser, H. G. (1984). Early life history stages of fishes and their characters. In H. G. Moser, W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, & S. L. Richardson (Eds.), Ontogeny and systematics of fishes: American Society of Ichthyologists and Herpetologists, Special Publication No. 1 (pp. 11-22). Allen Press Inc.
Ohlberger, J., & Langangen, Ø. (2015). Population resilience to catastrophic mortality events during early life stages. Ecological Applications, 25(5), 1348–1356. https://doi.org/10.1890/14- 1534.1
Portella, M. C., & Dabrowski, K. (2008). Diets. physiology, biochemistry and digestive tract development of freshwater fish larvae. In Cyrino, J. E. P.; Bureau, D. P., Kapoor, B. G. Feeding and digestive functions of fishes (pp. 227-279). Science Publishers.
Silva, R. C., Valentin, F. N., Paes, M. C. F., Faustino, F., Giannecchini, L. G., Viadanna, P. H. O., & Nakaghi, L. S. O. (2016). Development of the digestive tract in first feeding larvae of Betta splendens Regan, 1910. Journal of Applied Ichthyology, 32(5), 840-847.
Valentin, F. N., do Nascimento, N. F., da Silva, R. C., Fernandes, J. B. K., Giannecchini, L. G., & Nakaghi, L. S. O. (2015). Early development of Betta splendens under stereomicroscopy and scanning electron microscopy. Zygote, 23(2), 247-256. https://doi.org/10.1017/s0967199413000488
Vindenes, Y., Langangen, Ø., Winfield, I. J., & Vøllestad, L. A. (2016). Fitness consequences of early life conditions and maternal size effects in a freshwater top predator. Journal of Animal Ecology, 85(3), 692–704. https://doi.org/10.1111/1365-2656.12489
Zhang, F., Reid, K. B., & Nudds, T. D. (2017). Relative effects of biotic and abiotic factors during early life history on recruitment dynamics: A case study. Canadian Journal of Fisheries and Aquatic Sciences, 74(7), 1125-1134. https://doi.org/10.1139/cjfas-2016- 0155
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 İhsan Çelik, Pınar Çelik, Sencer Akalın

This work is licensed under a Creative Commons Attribution 4.0 International License.