Effects of Temperature and Nitrogen Concentration on Growth and Lipid Accumulation of the Green Algae Chlorella vulgaris for Biodiesel

Yazarlar

DOI:

https://doi.org/10.29329/actanatsci.2021.350.03

Anahtar Kelimeler:

Chlorella vulgaris- Nitrogen starvation- Temperature- Lipids biodiesel

Özet

This study investigated the effect of different temperatures and different nitrogen concentrations on the lipid content and biomass of Chlorella microalgae. In this study, algae were cultured in five media with different amounts NaNO3 as 3, 1.5, 0.80, 0.40 g/L, and three temperatures (10, 20, 30 °C). The results of the experiments showed that the optimal temperature and nitrogen concentration for the biomass increase in Chlorella vulgaris are 30°C and 3 g/L, respectively. It was observed that biomass decreased and lipid amount increased due to the decrease in nitrogen concentration. The high lipid amount of 20.80% dry weight (DW) was obtained from the algae produced at 30°C in the free-nitrate medium. The contribution of temperature change to lipid production was not as effective as nitrogen deficiency in the study. According to the fatty acid analysis results made by GC-FID, C. vulgaris seems suitable for biodiesel production because it contains medium-length (C16-C18) fatty acid chains.

Referanslar

Abd El-Baky, H. H., El Baz, F. K., & El-Baroty, G. S. (2004). Production of lipids rich in omega 3 fatty acids from the halotolerant alga Dunaliella salina. Biotechnology, 3(1), 102-108. https://doi.org/10.3923/biotech.2004.102.108

Can, Ş. S., Demir, V., & Can, E. (2015). Evaluating the dilution of municipal wastewater on biomass increase, lipid production and nutrient removal by the blue-green algae Spirulina platensis (Geitler). Fresenius Environmental Bulletin, 24(3), 904-909.

Chuck, C. J., Bannister, C. D., Hawley, J. G., Davidson, M. G., La Bruna, I., & Paine, A. (2009). Predictive model to assess the molecular structure of biodiesel fuel. Energy & Fuels, 23(4), 2290-2294. https://doi.org/10.1021/ef801085s

Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6), 1146-1151. https://doi.org/10.1016/j.cep.2009.03.006

Deng, X., Li, Y., & Fei, X. (2009). Microalgae: A promising feedstock for biodiesel. African Journal of Microbiology Research, 3(13), 1008-1014.

Dong, H. P., Williams, E., Wang, D. Z., Xie, Z. X., Hsia, R. C., Jenck, A., Halden, R., Li, J., Chen, F., & Place, A. R. (2013). Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiology, 162(2), 1110-1126. https://doi.org/10.1104/pp.113.214320

Ekin I. (2019). Quality and composition of lipids used in biodiesel production and methods of transesterification: A review. International Journal of Chemistry and Technology, 3(2), 77-91. https://doi.org/10.32571/ijct.623165

Griffiths, M. J., & Harrison, S. T. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), 493-507. https://doi.org/10.1007/s10811-008-9392-7

Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith, & M. H. Chanley (Eds.), Culture of marine invertebrate animals (pp. 29-60). Springer. https://doi.org/10.1007/978-1-4615-8714-9_3

Hsieh, C. H., & Wu, W. T. (2009). Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology, 100(17), 3921-3926. https://doi.org/10.1016/j.biortech.2009.03.019

Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27(8), 631-635. https://doi.org/10.1016/s0141-0229(00)00266-0

Ip, P. F., & Chen, F. (2005). Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochemistry, 40(11), 3491-3496. https://doi.org/10.1016/j.procbio.2005.02.014

Lee, S. J., Yoon, B. D., & Oh, H. M. (1998). Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques, 12(7), 553-556. https://doi.org/10.1023/A:100881171

Li, Q., Du, W., & Liu, D. (2008). Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80(5), 749-756. https://doi.org/10.1007/s00253-008-1625-9

Liew, W. H., Hassim, M. H., & Ng, D. K. (2014). Review of evolution, technology and sustainability assessments of biofuel production. Journal of Cleaner Production, 71, 11-29. https://doi.org/10.1016/j.jclepro.2014.01.006

Liu, Z. Y., Wang, G. C., & Zhou, B. C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99(11), 4717-4722. https://doi.org/10.1016/j.biortech.2007.09.073

Lombardi, A. T., & Wangersky, P. J. (1991). Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Marine Ecology Progress Series, 77, 39-47. https://doi.org/10.3354/meps077039

Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84(2), 281-291. https://doi.org/10.1007/s00253-009-1935-6

Metting, F. B. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17(5), 477-489. https://doi.org/10.1007/bf01574779

Nigam, S., Rai, M. P., & Sharma, R. (2011). Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. American Journal of Biochemistry and Biotechnology, 7(3), 124-129.

Olofsson, M., Lamela, T., Nilsson, E., Bergé, J. P., Del Pino, V., Uronen, P., & Legrand, C. (2014). Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata. Marine Drugs, 12(4), 1891-1910. https://doi.org/10.3390/md12041891

Pal, D., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2011). The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Applied Microbiology and Biotechnology, 90(4), 1429-1441. https://doi.org/10.1007/s00253-011-3170-1

Park, S. J., Choi, Y. E., Kim, E. J., Park, W. K., Kim, C. W., & Yang, J. W. (2012). Serial optimization of biomass production using microalga Nannochloris oculata and corresponding lipid biosynthesis. Bioprocess and Biosystems Engineering, 35(1), 3-9. https://doi.org/10.1007/s00449-011-0639-3

Pinto, E., Sigaud‐kutner, T. C. S., Leitão, M. A., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal–induced oxidative stress in algae. Journal of Phycology, 39(6), 1008-1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.x

Renaud, S. M., Thinh, L. V., Lambrinidis, G., & Parry, D. L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211(1-4), 195-214. https://doi.org/10.1016/S0044-8486(01)00875-4

Roleda, M. Y., Slocombe, S. P., Leakey, R. J., Day, J. G., Bell, E. M., & Stanley, M. S. (2013). Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresource Technology, 129, 439-449. https://doi.org/10.1016/j.biortech.2012.11.043

Sajjadi, B., Chen, W. Y., Raman, A. A. A., & Ibrahim, S. (2018). Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renewable and Sustainable Energy Reviews, 97, 200-232. https://doi.org/10.1016/j.rser.2018.07.050

Sandnes, J. M., Källqvist, T., Wenner, D., & Gislerød, H. R. (2005). Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production. Journal of Applied Phycology, 17(6), 515-525. https://doi.org/10.1007/s10811-005-9002-x

Sissener, N. H., Ørnsrud, R., Sanden, M., Frøyland, L., Remø, S., & Lundebye, A. K. (2018). Erucic acid (22: 1n-9) in fish feed, farmed, and wild fish and seafood products. Nutrients, 10(10), 1443. https://doi.org/10.3390/nu10101443

Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96. https://doi.org/10.1263/jbb.101.87

Su, C. H., Chien, L. J., Gomes, J., Lin, Y. S., Yu, Y. K., Liou, J. S., & Syu, R. J. (2011). Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal of Applied Phycology, 23(5), 903-908. https://doi.org/10.1007/s10811-010-9609-4

Sun, X., Cao, Y., Xu, H., Liu, Y., Sun, J., Qiao, D., & Cao, Y. (2014). Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresource Technology, 155, 204-212. https://doi.org/10.1016/j.biortech.2013.12.109

Taoka, Y., Nagano, N., Okita, Y., Izumida, H., Sugimoto, S., & Hayashi, M. (2009). Influences of culture temperature on the growth, lipid content and fatty acid composition of Aurantiochytrium sp. strain mh0186. Marine Biotechnology, 11(3), 368-374. https://doi.org/10.1007/s10126-008-9151-4

Van Wagenen, J., Miller, T. W., Hobbs, S., Hook, P., Crowe, B., & Huesemann, M. (2012). Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies, 5(3), 731-740. https://doi.org/10.3390/en5030731

Vasudevan, P. T., & Briggs, M. (2008). Biodiesel production—current state of the art and challenges. Journal of Industrial Microbiology and Biotechnology, 35(5), 421. https://doi.org/10.1007/s10295-008-0312-2

Widjaja, A., Chien, C. C., & Ju, Y. H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 13-20. https://doi.org/10.1016/j.jtice.2008.07.007

Xin, L., Hong-Ying, H., Ke, G., & Ying-Xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 5494-5500. https://doi.org/10.1016/j.biortech.2010.02.016

Yeh, K. L., & Chang, J. S. (2011). Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP‐31: Implications for biofuels. Biotechnology Journal, 6(11), 1358-1366. https://doi.org/10.1002/biot.201000433

Yayınlanmış

2021-09-21

Nasıl Atıf Yapılır

Seyhaneyıldız Can, Şafak, Koru, E., Cirik, S., Turan, G., Tekoğul, H., & Subakan, T. (2021). Effects of Temperature and Nitrogen Concentration on Growth and Lipid Accumulation of the Green Algae Chlorella vulgaris for Biodiesel. Acta Natura Et Scientia, 2(2), 101–108. https://doi.org/10.29329/actanatsci.2021.350.03

Sayı

Bölüm

Araştırma Makalesi