Impact of Different Nitrogen Sources and Concentrations on the Growth and Biochemical Structure of Lemna minor

Yazarlar

DOI:

https://doi.org/10.29329/actanatsci.2023.354.2

Anahtar Kelimeler:

Lemna minor- Nitrogen sources- Concentration- Growth- Protein- Chlorophyll-a- Carotene

Özet

This study aimed to examine the impact of various nitrogen sources and concentrations on the growth and biochemical composition of Lemna minor. Specifically, three nitrogen sources, namely ammonium, nitrate, and urea, were utilized. These nitrogen sources were incorporated into the Hoagland nutrient medium at two different concentrations: 2500 µM L-1 and 5000 µM L-1. The impact of various nitrogen concentrations on the biochemistry of L. minor, including the number of individuals, chlorophyll-a levels, carotene content, dry matter, and protein content was examined. The experimental results revealed that the 7th, 5th, and 6th groups exhibited the highest relative frond number, while no significant statistical difference (p>0.05) was observed between the 5000 µM L-1 and 2500 µM L-1 groups among all experimental groups. The 2nd, 7th, and 5th groups displayed the highest relative growth rate. The 4th group using NH4-N as the source exhibited the highest total carotene and chlorophyll-a content. Although there were no significant differences in the dry matter and protein values of L. minor, the protein ratio was higher in the 3rd and 4th groups with NH4-N as the source compared to the other groups. The results indicate that NO3 nitrogen is the most suitable nitrogen source for promoting the growth and biochemical composition of L. minor, as evidenced by an increase in relative frond number and relative growth. On the other hand, NH4 nitrogen showed favorable effects on protein, carotene, and chlorophyll-a content. Additionally, the experimental groups with a nitrogen concentration of 2500 µM L-1 yielded better overall results. Interestingly, in terms of protein efficiency, it was observed that nitrogen concentrations played a more significant role than nitrogen sources, and groups with lower dilution rates exhibited superior outcomes.

Referanslar

Akel, E. (2006). Comparative studies on feeding possibilities of duckweed (Lemna minor L.) in aquarium environment of Singaporean red-cheeked freshwater turtles (Pseudemys scripta elegans). [Ph.D. Thesis. Kütahya Dumlupınar University]

Alaerts, G. J., Rahman Mahbubar, MD., & Kelderman, P. (1996). Performance analysis of a full-scale duckweed-covered sewage lagoon. Water Research, 30(4), 843-852. https://doi.org/10.1016/0043-1354(95)00234-0

AOAC. (1990). Official methods of analysis (pp. 1028-1039). In Helrich, K. (Ed.), Association of Official Analytical Chemists International. 15th ed. Association of Official Analytical Chemists Inc.

Appenroth, K. J., Sree, K. S., Böhm, V., Hammann, S., Vetter, W., Leiterer, M., & Jahreis, G. (2017). Nutritional value of duckweeds (Lemnaceae) as human food. Food Chemistry, 217, 266-273. https://doi.org/10.1016/j.foodchem.2016.08.116

Beer, S., Björk, M., & Beardall, J. (2014). Photosynthesis in the marine environment. Wiley-Blackwell.

Bergmann, B. A., Cheng, J., Classen, J., & Stomp, A. -M. (2000). In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresource Technology, 73(1), 13-20. https://doi.org/10.1016/S0960-8524(99)00137-6

Boussadia, O., Steppe, K., Zgallai, H., El Hadj, S. B., Braham, M., Lemeur, R., & Van Labeke, M. C. (2010). Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’and ‘Koroneiki’. Scientia Horticulturae, 123(3), 336-342. https://doi.org/10.1016/j.scienta.2009.09.023

Brentrup, F., & Pallière, C. (2010). Nitrogen use efficiency as an agro-environmental indicator. Proceedings of the OECD Workshop on Agrienvironmental Indicators: Lessons Learned and Future Directions, Switzerland, pp. 1-9.

Britto, D. T., & Kronzucker, H. J. (2002). NH4+ toxicity in higher plants: A critical review. Journal of Plant Physiology, 159(6), 567-584. https://doi.org/10.1078/0176-1617-0774

Bütünoğlu, A. (2018). Evaluation of nutrient removal by floating wetland and aquatic plants in water resources. [MSc. Thesis. Ankara TR Ministry of Agriculture and Forestry, General Directorate of Water Management].

Caicedo, J. R., van der Steen, N. P., Arce, O., & Gijzen, H. J. (2000). Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). Water Research, 34(15), 3829-3835. https://doi.org/10.1016/S0043-1354(00)00128-7

Cao, X., Ma, L. Q., & Tu, C. (2004). Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environmental Pollution, 128(3), 317-325. https://doi.org/10.1016/j.envpol.2003.09.018

Carpenter, S. R., & Lodge, D. M. (1986) Effects of submersed macrophytes on ecosystem processes. Aquatic Botany, 26, 341-370. https://doi.org/10.1016/0304-3770(86)90031-8

Cedergreen, N., & Madsen, T. V. (2002). Nitrogen uptake by the floating macrophyte Lemna minor. New Phytologist, 155(2), 285-292. https://doi.org/10.1046/j.1469-8137.2002.00463.x

Chapman, R. L. (2013). Algae: The world’s most important “plants”—an introduction. Mitigation and Adaptation Strategies for Global Change, 18(1), 5-12. https://doi.org/10.1007/s11027-010-9255-9

Chaturvedi, K. M. M., Langote, D. S., & Asolekar, R. S. (2003). Duckweed-fed fisheries for treatment of low strength community waste water. WWWTM Newsletter, Asian Institute of Technology, India. https://ait.ac.th/

Coşkun, Ö. F., Aydın, D., Akıska, S., Özel, H. B., & Varol, T. (2018). Determination of the duckweed species in Turkey. Journal of Bartın Faculty of Forestry, 20(1), 145-151. http://doi.org/10.24011/barofd.406868

Culley Jr, D. D., & Epps, E. A. (1973). Use of duckweed for waste treatment and animal feed. Water Pollution Control Federation, 45(2), 337-347.

Dayıoğlu, H., Özyurt, M. S., Aker, M. E., Çaycı, M. K., & Solak, C. N. (2006). Pseudemys scripta elegans’ın akvaryum ortamında Lemna minor L. ile besleme imkanları üzerine bir araştırma [A study on feeding oppurtinies of Pseudemys scripta elegans fed with Lemna minor L. in aquarium]. Dumlupınar Üniversitesi Fen Bilimleri Dergisi, (011), 1-10.

Ericsson, T., Larsson, C. -M., & Tillberg, E. (1982). Growth responses of Lemna to different levels of nitrogen limitation. Zeitschrift für Pflanzenphysiologie, 105(4), 331-340. https://doi.org/10.1016/S0044-328X(82)80029-9

Fang, Y. Y., Babourina, O., Rengel, Z., Yang, X. E., & Pu, P. M. (2007). Ammonium and nitrate uptake by the floating plant Landoltia punctata. Annals of Botany, 99(2), 365-370. https://doi.org/10.1093/aob/mcl264

Foundation for Water Research (FWR). (2015). Toxic algal blooms in drinking water reservoirs. foundation for water research. Retrieved on June 22, 2023, from http://www.fwr.org/drnkwatr/algaltox.htm

Gojon, A., Krouk, G., Perrine-Walker, F., & Laugier, E. (2011). Nitrate transceptor(s) in plants. Journal of Experimental Botany, 62(7), 2299-2308. https://doi.org/10.1093/jxb/erq419

Gökyay, O., & Balcıgil, M. (2017). Ham ve sentetik atıksularda su mercimeği (Lemna minor L.) kullanılarak karbon ve besi maddelerinin gideriminin incelenmesi ve karşılaştırılması [The investigation and comparison of carbon and nutrient removal from domestic and synthetic wastewaters using duckweed (Lemna minor L.)]. Marmara Fen Bilimleri Dergisi, 29(4), 124-130. https://doi.org/10.7240/marufbd.369743

Iatrou, E. I., Kora, E., & Stasinakis, A. S. (2019). Investigation of biomass production, crude protein and starch content in laboratory wastewater treatment systems planted with Lemna minor and Lemna gibba. Environmental Technology, 40(20), 2649-2656. https://doi.org/10.1080/09593330.2018.1448002

Jensen, J., Sorokin, N., Dirven-van Breemen, E. M., Bogolte, T., Erlacher, E., Ehlers, C., Ter Laak, T., Hartnik, T., Bierkens, J., Rutgers, M., Mesman, M. (2006). A triad-based selection of tools for site-specific assessment of ecological risk (pp. 65-116). In Jensen, J., & Mesman, M. (Eds.), Ecological risk assessment of contaminated land-Decision support for site specific investigations. Liberation: RIVM report number 711701047. Accessed June 22, 2023, from https://www.rivm.nl/bibliotheek/rapporten/711701047.pdf

Kara, B. (2006). Determination of nitrogen uptake and utilization efficiency of corn with different plant densities and different nitrogen doses in Çukurova conditions. [Ph.D. Thesis. Adana Çukurova University].

Karaşahin, B. (1998). A research on the benthic fauna of Lake Kovada and Kovada Channel. [M.Sc. Thesis. Isparta Süleyman Demirel University]

Körner, S., Lyatuu, G. B., & Vermaat, J. E. (1998). The influence of Lemna gibba L. on the degradation of organic material in duckweed-covered domestic wastewater. Water Research, 32(10), 3092-3098. https://doi.org/10.1016/S0043-1354(98)00054-2

Latrou, E. I., Kora, E., & Stasinakis, A. S. (2019). Investigation of biomass production, crude protein and starch content in laboratory wastewater treatment systems planted with Lemna minor and Lemna gibba. Environmental Technology, 40(20), 2649-2656, https://doi.org/10.1080/09593330.2018.1448002

Leblebici, Z. (2010). Effect of nitrate, phosphate and sulphate on accumulation of some heavy metals in members of duckweed spread in Turkey. [Ph.D. Thesis. Kayseri Erciyes University].

Leng, R. A. (1999). Duckweed: A tiny aquatic plant with enormous potential for agriculture and environment. Proceedings of the 47th International Conference on Environmental Systems, South Carolina. pp. ICES-2017-281.

Leng, R. A., Stambolie, J. H., & Bell, R. (1995). Duckweed - a potential high-protein feed resource for domestic animals and fish. Livestock Research for Rural Development, 7(1), 5.

Li, G., Li, B., Dong, G., Feng, X., Kronzucker, H. J., & Shi, W. (2013). Ammonium-induced shoot ethylene production is associated with the inhibition of lateral root formation in Arabidopsis. Journal of Experimental Botany, 64(5), 1413-1425. https://doi.org/10.1093/jxb/ert019

Madsen, J. D. (2009). Eurasian watermilfoil. In L. A. Gettys, W. T. Haller, & M. Bellaud (Eds.), Biology and control of aquatic plants: A best management practices handbook (pp. 95-98). Accessed June 22, 2023, from https://plants-archive.ifas.ufl.edu/wp-content/uploads/files/mng/AERF_handbook.pdf

Madsen, J. D. (2023). Impact of invasive aquatic plants on aquatic biology. In L. A. Gettys, W. T. Haller, & D. G. Petty (Eds.), Biology and control of aquatic plants: A Best Management Practices Handbook. 4th edition (pp. 1-6). Aquatic Ecosystem Restoration Foundation.

Madsen, J. D., Chambers, P. A., James, W. F., Koch, E. W., & Westlake, D. F. (2001). The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444(1), 71-84. https://doi.org/10.1023/A:1017520800568

Oron, G., Porath, D., & Jansen, H. (1987). Performance of the duckweed species Lemna gibba on municipal wastewater for effluent renovation and protein production. Biotechnology and Bioengineering, 29(2), 258-268. https://doi.org/10.1002/bit.260290217

Petersen, F., Demann, J., Restemeyer, D., Ulbrich, A., Olfs, H. W., Westendarp, H., & Appenroth, K. J. (2021). Influence of the nitrate-N to ammonium-N ratio on relative growth rate and crude protein content in the duckweeds Lemna minor and Wolffiella hyalina. Plants, 10(8), 1741. https://doi.org/10.3390/plants10081741

Rataj, K., & Horeman, T. J. (1977). Aquarium plants- their identification, cultivation and ecology. T.F.H. Publications, Inc.

Rooijakkers, P. (2016). Photosynthesis model to predict duckweed growth at the Ecoferm greenhouse. [Bachelor Thesis. Wageningen University & Research].

Rudolph, H. J., & Voigt, J. U. (1986). Effects of NH+4-N and NO+3-N on growth and metabolism of Sphagnum magellanicum. Physiologia Plantarum, 66(2), 339-343. https://doi.org/10.1111/J.1399-3054.1986.TB02429.X

Sánchez, M. D., Mantell, C., Rodríguez, M., Martínez de la Ossa, E., Lubián, L. M., & Montero, O. (2005). Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 66(2), 245-251. https://doi.org/10.1016/j.jfoodeng.2004.03.021

Saygıdeğer, S. (1996). Lemna gibba L. ve Lemna minor L., (Lemnaceae)’nin morfolojik anatomik, ekolojik ve fizyolojik özellikleri. Ekoloji, 5(18), 8-11.

Saygıdeğer, S. (1997). Seyhan Nehrinde bazı su bitkileri üzerine tarımsal kimyasalların etkileri [The effects of agricultural chemicals on some aquatic plants in the Seyhan River]. Hacettepe Fen ve Mühendislik Bilimleri Dergisi Seri A, 18, 35-43.

Saygıdeğer, S. D., Keser, G., & Dogan, M. (2013). Effects of lead on chlorophyll content, total nitrogen, and antioxidant enzyme activities in duckweed (Lemna minor). International Journal of Agriculture and Biology, 15(1), 145-148.

Skillicorn, P., Spira, W., & Journey, W. (1993). Duckweed aquaculture: A new aquatic farming system for developing countries. World Bank.

Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. W. H. Freeman and Co.

Sońta, M., Rekiel, A., & Batorska, M. (2019). Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture – A review. Annals of Animal Science, 19(2), 257-271. https://doi.org/10.2478/aoas-2018-0048

Topal, M., Karagözoğlu, B., Öbek, E., & Topal, I. (2011). Usage of some duckweeds in nutrient removal. Mehmet Akif Ersoy University Journal of the Graduate School of Natural and Applied Sciences, 2(2), 12-28.

von Wirén, N., Gazzarrini, S., Gojon, A., & Frommer, W. B. (2000). The molecular physiology of ammonium uptake and retrieval. Current Opinion in Plant Biology, 3(3), 254-261. https://doi.org/10.1016/S1369-5266(00)80074-6

Wanapat, M. (1994). Supplementation of straw-based diets for ruminants in Thailand. Proceedings of Sustainable Animal Production and the Environment. The 7th AAAP Animal Science Congress, Indonesia. pp. 25-38.

Wang, C., Zhang, S. H., Li, W., Wang, P. F., & Li, L. (2011). Nitric oxide supplementation alleviates ammonium toxicity in the submerged macrophyte Hydrilla verticillata (Lf) Royle. Ecotoxicology and Environmental Safety, 74(1), 67-73.

Wang, W., Yang, C., Tang, X., Gu, X., Zhu, Q., Pan, K., Hu, Q., & Ma, D. (2014). Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L. Environmental Science and Pollution Research, 21(24), 14202-14210. https://doi.org/10.1007/s11356-014-3353-2

Wersal, R. M., & Madsen, J. D. (2012). Aquatic plants their uses and risks. A review of the global status of aquatic plants. FAO, Rome. 97 p.

Wett, B., & Rauch, W. (2003). The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater. Water Research, 37(5), 1100-1110. https://doi.org/10.1016/S0043-1354(02)00440-2

Whitehead, A. J., Lo, K. V., & Bulley, N. R. (1987). The effect of hydraulic retention time and duckweed cropping rate on nutrient removal from dairy barn wastewater. In K. R. Reddy and W. H. Smith (Eds.), Aquatic Plants for Water Treatment and Resource Recovery (pp. 697-703). Magnolia Publishing Inc.

Yılmaz, Z. (2004). Nutrient removal from S.U. campus wastewater by duckweed (Lemna minor L.) [M.Sc. Thesis. Selçuk University].

Zou, N., & Richmond, A. (2000). Light-path length and population density in photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). Journal of Applied Phycology, 12, 349-354. https://doi.org/10.1023/A:1008151004317

Yayınlanmış

2023-08-14

Nasıl Atıf Yapılır

Tekoğul, H., Eminçe Saygı, H., Kop, A., Durmaz, Y., & Bayrak, A. (2023). Impact of Different Nitrogen Sources and Concentrations on the Growth and Biochemical Structure of Lemna minor . Acta Natura Et Scientia, 4(2), 114–125. https://doi.org/10.29329/actanatsci.2023.354.2

Sayı

Bölüm

Araştırma Makalesi